
Formalized First-Order Logic

Andreas Halkjær From

Kongens Lyngby 2017

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

The goal of this thesis is to formalize first-order logic, specifically the natural
deduction proof system NaDeA, in the proof assistant Isabelle. The syntax and
semantics are formalized as Isabelle data types and functions and the inference
rules of NaDeA are defined as an inductive set.

The soundness of these inference rules is formally verified, ensuring only valid
formulas can be derived in the proof system.

A textbook proof of completeness for sentences in natural deduction using
abstract consistency properties is explained before this proof is formalized. This
formalization is based on existing work, but modernized for this thesis. It is
described in depth and a version of the completeness result using any countably
infinite domain is developed by proving that the semantics respect the bijection
between this and the domain of Herbrand terms.

Next the problem of open formulas is discussed and a solution provided by
an extension to NaDeA. This extension allows the derivation of the original
formula from its universal closure, enabling us to close the formula, apply the
original completeness result and derive the original one in the extended system.
Assumptions are handled by turning them into implications and back again, a
technique that requires a proof of weakening to be formalized first. It is unlikely
that this extension is actually necessary for completeness for open formulas, but
it makes the otherwise subtle interaction between substitution and de Bruijn
indices more manageable.

Finally insights gained while working with the formalization and extending it
are shared, in the hope that it may help other formal verification efforts.

ii

Preface

This thesis is submitted in partial fulfillment of the requirements for acquiring
a BSc in Engineering (Software Technology). The thesis is for 15 ECTS and
deals with the formalization of soundness and completeness proofs for natural
deduction in the Isabelle proof assistant.

I have previously taken the course 02156 Logical Systems and Logic Programming
on first-order logic and Prolog, where I also worked with NaDeA. Furthermore
I have taken the courses 02157 Functional Programming and 02257 Applied
Functional Programming, both on F#. I have previous experience with Isabelle
through the special course “A Simple Prover with a Formalization in Isabelle”
(based on a sequent calculus and thus quite different from NaDeA).

I would like to thank my supervisor Jørgen Villadsen for his guidance, constant
encouragement and eye for detail, and for teaching me logic and Isabelle in the
first place. I would also like to thank my co-supervisors Anders Schlichtkrull
and John Bruntse Larsen for useful critiques on this document and insights into
the problem in general.

I am grateful to Stefan Berghofer for taking the time to answer some of the
questions that arose during this work.

I want to thank Thomas Søren Henney for his friendship, advice and academic
support during the past three years as well as Magnus Brandt-Møller and Jacob
E. Overgaard for making the writing process less lonely. A special thanks goes
to my family for their support during this project.

Andreas Halkjær From

iv

Contents

Summary i

Preface iii

1 Introduction 1
1.1 Aim and Scope . 1

1.1.1 Logic . 2
1.1.2 First-Order Logic . 3
1.1.3 Proof Systems . 5
1.1.4 Formalization . 6

1.2 Contributions . 8
1.3 Overview . 10

2 Formalizations in Isabelle 11
2.1 Numbers and Lists . 11
2.2 Proof Methods . 15
2.3 Quicksort . 17

2.3.1 Permutation . 17
2.3.2 Sorting . 19

3 Proofs in Natural Deduction 21
3.1 Natural Deduction in a Textbook 21

3.1.1 On Substitution . 21
3.1.2 Natural Deduction Rules 22

3.2 Example Proofs . 24
3.2.1 Modus Tollens . 24
3.2.2 Socrates is Mortal . 26

vi CONTENTS

4 Formalizing Syntax and Semantics 29
4.1 Syntax . 29

4.1.1 Terms . 29
4.1.2 Formulas . 30

4.2 Semantics . 30
4.2.1 Terms . 30
4.2.2 Formulas . 31

5 Formalizing Natural Deduction 33
5.1 Utilities . 33

5.1.1 New Constants . 33
5.1.2 Substitution . 34

5.2 Formalized Rules . 36
5.3 Example Proofs . 36

5.3.1 Reflexivity . 37
5.3.2 Modus Tollens . 37
5.3.3 Socrates is Mortal . 38

6 Formalizing Soundness 41
6.1 Lemmas . 41

6.1.1 Built-In Logical Connectives 42
6.1.2 Environment Extension 42
6.1.3 New Constants . 43
6.1.4 Substitution . 44

6.2 Soundness . 46
6.2.1 A Consistency Corollary 48

7 Outline of Completeness Proof 49
7.1 The Big Picture . 50
7.2 Types of Formulas . 50
7.3 Consistency Properties . 51

7.3.1 Alternate Consistency Property 52
7.3.2 Closure under Subsets . 52
7.3.3 Finite Character . 53

7.4 Maximal Consistent Sets . 53
7.4.1 Chains . 53
7.4.2 Extension . 54

7.5 Hintikka’s Lemma . 54
7.5.1 Hintikka Sets . 55
7.5.2 Herbrand Models . 55
7.5.3 The Lemma . 55

7.6 Model Existence Theorem . 57
7.7 Completeness . 57

CONTENTS vii

8 Formalizing Completeness 59
8.1 Consistency Properties . 59

8.1.1 Alternate Consistency Property 60
8.1.2 Closure under Subsets . 64
8.1.3 Finite Character . 66

8.2 Enumerating Data Types . 68
8.3 Maximal Consistent Sets . 69

8.3.1 Chains . 69
8.3.2 Extension . 69
8.3.3 Maximality . 72

8.4 Hintikka Sets . 72
8.4.1 Herbrand Terms . 73
8.4.2 The Lemma . 74
8.4.3 Maximal Extension is Hintikka 75

8.5 Model Existence Theorem . 77
8.6 Inference Rule Consistency . 78
8.7 Completeness using Herbrand Terms 79
8.8 Completeness in Countably Infinite Domains 81

8.8.1 Bijective Semantics . 81
8.8.2 Completeness . 83

8.9 The Löwenheim-Skolem Theorem 85
8.9.1 Satisfiable Sets are a Consistency Property 85
8.9.2 Unused Parameters . 87
8.9.3 The Theorem . 88

9 On Open Formulas 91
9.1 Assuming Nothing . 92

9.1.1 Strategy . 93
9.1.2 Substituting Constants . 94
9.1.3 Soundness . 95
9.1.4 Universal Closure . 96
9.1.5 Variables for Constants 99
9.1.6 Obtaining Fresh Constants 101

9.2 Implications and Assumptions . 103
9.2.1 Renaming Parameters . 104
9.2.2 Weakening Assumptions 105
9.2.3 Completeness . 109

9.3 A Simpler Rule Subtle . 111

10 Conclusion 113
10.1 Discussion . 113
10.2 Future Work . 115

Bibliography 117

viii CONTENTS

Chapter 1

Introduction

This introduction is divided into three sections. First the aim and scope of the
project is presented along with important concepts from logic and an introduction
to formalization. Next the contributions made by this work are explained and
this project’s relation to existing work noted. Finally an outline for the rest of
the thesis is given.

1.1 Aim and Scope

The aim of the project is to formalize soundness and completeness proofs for a
proof system in first-order logic. To do this these concepts must first be under-
stood and the next few subsections aim to provide exactly this understanding.
The scope of the project is limited to an existing proof system, NaDeA, and
the proofs are based on existing formalized proofs. These proofs have been
updated as part of this work, and an extension of the completeness proof has
been developed. The details of this are explained in the next section.

2 Introduction

1.1.1 Logic

The main part of the title of this thesis is logic. The study of logic has interested
mankind at least since Aristotle’s syllogisms in ancient Greece: “All men are
mortal. Socrates is a man. Therefore Socrates is mortal.” Syllogisms deal with
the process of deriving new knowledge from existing facts, something known as
inference. Another important aspect of logic is semantics, or, the meaning of
things. Logic is a tool that allows us to be absolutely precise about inference
and semantics, ensuring that the conclusions we make from valid premises are
themselves valid, regardless of any specific meaning attributed to either premises
or conclusions. With that said, the purpose of this introduction is not absolute
precision, but to provide intuition for the rest of the chapters where the definitions
are formalized. The following descriptions follow the textbook Mathematic Logic
for Computer Science by Ben-Ari [Ben12] to some degree.

One type of logic is propositional logic which deals with statements that are true
or false, such as “it is raining” or “the moon is made of green cheese.” These
statements, encoded as proposition symbols, can be combined into formulas using
so-called logical connectives like negation, conjunction and implication [Ben12,
def. 2.1]. This allows us to form sentences like “it is raining and the moon is
made of green cheese.” Precise definitions of these logical connectives were given
by George Boole in 1847 with his development of boolean algebra and today the
connectives are also known as boolean operators, even though we use a different
notation than Boole did [Bur14]. Natural language can lead to ambiguity, so
when working in propositional logic we use the syntax described below instead.
Capital letters are used to represent arbitrary formulas here and henceforth. A
formula in propositional logic is then either:

• A proposition symbol, p, q, r, . . ., > or ⊥.

• A negation, ¬A.

• A conjunction, A ∧B, disjunction, A ∨B, or implication, A→ B.

Other logical connectives exist, but these can be derived from the ones above.
Our example may then be encoded as p ∧ q where p stands for “it is raining”
and q for “the moon is made of green cheese.” The next step is semantics, the
meaning of formulas. For this we first need an assignment, σ, of truth values to
the proposition symbols, e.g. σ(p) = T and σ(q) = F where T represents truth
and F represents falsehood. Next the truth value, vσ (A) of a formula A under
assignment σ is determined inductively as follows where “iff” is short for “if and
only if”:

1.1 Aim and Scope 3

• vσ (>) = T and vσ (⊥) = F .

• vσ (p) = σ(p) when p is a proposition symbol other than > and ⊥.

• vσ (¬A) = T iff vσ (A) = F .

• vσ (A ∧B) = T iff vσ (A) = T and vσ (B) = T .

• vσ (A ∨B) = T iff vσ (A) = T or vσ (B) = T .

• vσ (A→ B) = F if vσ (A) = T but vσ (B) = F , and T otherwise.

A formula is said to be true if its truth value is T and false if its truth value is F .

1.1.2 First-Order Logic

Propositional logic is not powerful enough to express what we really mean when
we say “all men are mortal”; in propositional logic the statement is simply true
or false and cannot be used to gain knowledge of any particular man. This is
remedied by moving to the next part of the title, first-order logic. First-order
logic was described by Gottlob Frege in his Begriffsschrift from 1879 where he
gives precise definitions of of terms, the universal quantifier and predicates [Zal17].
First, a term is either:

• A variable x, y, z, . . .

• A function symbol f, g, h, . . . applied to a list of terms. Each function
symbol has an associated arity which determines the length of the list of
terms they can be applied to. Functions of no arguments, of arity zero, are
called constants and are often named c.

Given terms we can now define formulas in first-order logic as either:

• > or ⊥.

• A negated formula or two formulas connected by a logical connective as in
propositional logic.

• A predicate symbol p, q, r, . . . applied to a list of terms. Like function
symbols, predicates also have an associated arity. Predicates of arity zero
correspond to proposition symbols in propositional logic.

4 Introduction

• A universally quantified formula ∀x.A, where x is a variable name.

• An existentially quantified formula ∃x.A where x is a variable name.

In the last two cases we say that the quantifier binds the variable x in the formula
A. Equivalently a quantifier may be referred to as a binder. When a formula
only contains bound variables it is said to be closed. Closed formulas are also
called sentences. Conversely we call unbound variables free and the formulas
they occur in open.

To give a semantics to formulas in first-order logics we need to specify a domain, D,
which is a non-empty set of values a variable can take on. A variable assignment,
also known as an environment, maps variables to elements of D. We also need an
assignment of the function symbols to functions on the domain, F . If for instance
the domain is the natural numbers and f is a function symbol of arity two, f
may be assigned the meaning of addition. Constants are simply assigned values
from the domain. Finally we need an assignment, G, from predicate symbols and
associated lists of terms to truth values. Taking again the domain of natural
numbers, a predicate p of arity two may be given the meaning of equality. The
three of these, D, F and G constitute an interpretation [Ben12, def. 9.3]. The
set of formulas expressible under an interpretation may be referred to as the
language. Given an interpretation and a variable assignment, we can give a
semantics first for terms then for formulas. Terms interpret to members of D:

• vσ (x) = σ(x).

• vσ (f(t1, . . . , tn)) = (F(f))(vσ (t1) , . . . , vσ (tn)). That is, the value of a
function symbol, f , applied to a list of terms, is given by recursively
interpreting the list of terms and applying the result of looking up f in F
to the resulting list of values.

The truth value vσ (A) of a formula A under assignment σ is again defined
inductively. The notation σ[x← d] is short-hand for the function which maps x
to d and every other input y to σ(y).

• vσ (>) = T and vσ (⊥) = F

• The logical connectives have the same meaning as in propositional logic.

• vσ (p(t1, . . . , tn)) = (G(p))(vσ (t1) , . . . , vσ (tn)).

• vσ (∀x.A) = T iff vσ[x←d] (A) = T for all d ∈ D.

1.1 Aim and Scope 5

• vσ (∃x.A) = T iff vσ[x←d] (A) = T for some d ∈ D.

A formula is satisfiable if there exists an interpretation and environment under
which it interprets to T and valid if it does so under all interpretations and
environments. A satisfying interpretation is called a model. This definition
deviates from Ben-Ari where satisfiability and validity are only defined for
closed formulas [Ben12, def 7.23] whose truth value is independent of the initial
environment.

As an example, the statement “If every person that is not rich has a rich father,
then some rich person must have a rich grandfather.” can be encoded in first-order
logic as:

∀x.(¬r(x)→ r(f(x)))→ ∃x.(r(x) ∧ r(f(f(x))))

where the domain is people and r(x) = T iff x is rich and f(x) is the father of x,
making f(f(x)) the grandfather. It turns out that this example is actually valid.

Other logics exist and are used for certain purposes, but first-order logic is
in many ways the primary logic used today. It also forms the basis of the
higher-order logic used in the Isabelle/HOL proof assistant used in this project.

1.1.3 Proof Systems

To prove that a formula is valid, we might use a proof system to derive it. A
proof system is defined as a set of axioms, formulas which we assert can be
derived, and an inductive definition of inference rules for deriving more formulas
from existing ones. For instance we might encode the inference rule modus
ponens which says that if P → Q can be derived and P can, then we can derive
Q. We say that a formula is derivable in a proof system if there exists a chain of
inferences starting (or ending) at axioms, which produces the formula. Extending
this, a formula may be derivable from some assumptions if the formula can be
derived assuming these assumptions as axioms.

Natural deduction is a proof system developed especially by Gerhard Gentzen
in 1932 which emphasizes inference rules that are very close to human reason-
ing [Pla16]. As such, natural deduction has become widespread in both theory
and practice; much metatheory about it has been developed and both Isabelle
and the Coq proof assistant use this kind of proof system internally. Natural
deduction is explained in more depth in chapter 3.

6 Introduction

Derivable Valid

(a) Unsound and incomplete

Valid

Derivable

(b) Sound but incomplete

Derivable

Valid

(c) Complete but unsound

Derivable

Valid

(d) Sound and complete

Figure 1.1: The four possible combinations of soundness and completeness over
the space of formulas.

Two important properties of proof systems are soundness and completeness.
Soundness states that only valid formulas can be derived in the system. It is a
correctness property enabling us to trust the proofs we make with the system.
Completeness states that all valid formulas are derivable in the system. This
obviously makes the proof system a lot more useful than an incomplete one.
The relation between these two properties and the space of valid and derivable
formulas is depicted in figure 1.1. As depicted, exactly the valid formulas can be
derived in a sound and complete proof system.

1.1.4 Formalization

First-order logic is relevant for software development because it provides a
precise language that can be used when proving properties about programs. The
inferences used in a proof, whether these are specified by the user or found
automatically, can be checked by a computer to ensure that they are applied
correctly according to the proof system.

However this only checks that the proof system is used correctly, not that the
resulting proof itself is valid; for that we need a proof of soundness. It would

1.1 Aim and Scope 7

be a shame to derive a proof in such a system, only to find out later that its
soundness proof was flawed. This is especially a problem if the proof system has
been used in the verification of mission-critical software: The software may fail,
even though it was “proven” correct, because the soundness proof had a flaw!
Alternatively, time may be wasted trying to prove something in the belief that
the proof system is complete, but that proof might as well be flawed.

A prominent example of a flawed proof is one by Kempe in 1879 of the four color
conjecture (now theorem). This proof was believed until 1890 where Heawood
found a counter example to one of Kempe’s assumptions [Hea80]. Kempe’s
fallacious proof, along with any other fallacious proof, cannot be formalized in a
correct proof assistant and this is where the last part of the title comes in.

When we talk about formalization of a proof, we mean that there is a mechanical
process for determining its correctness [Har08]: A computer can check it for us.
The machine has no intuition for what should or should not hold, so blind spots
like Kempe’s are avoided. Formalization of a proof in a state-of-the art proof
assistant like Isabelle thus gives us very high confidence that the proof is correct.

Isabelle is an interactive proof assistant for formalizing mathematics and formally
verifying the correctness of software. The most commonly used instance of Isabelle
is Isabelle/HOL that uses higher-order logic as the basis for its proofs. In this
thesis, I will refer to Isabelle/HOL simply as Isabelle. HOL can be thought of as
first-order logic extended with data types and a simple (non-dependent) type
theory. Isabelle also supports recursion over these data types, pattern matching,
inductive definitions and more. Various methods of proof search are available to
handle intermediary bookkeeping, allowing Isabelle proofs to somewhat resemble
pencil-and-paper proofs in terms of the number of details given. These proofs
can be developed in the Isabelle/jEdit editor that continuously checks their
correctness and allows rich semantic markup. Isabelle can be downloaded at:

http://isabelle.in.tum.de

The issue of trusting the code of the proof assistant is mitigated by hand-
verification of the assistant’s small kernel through which every proof must go,
or by automatically translating proofs between different systems [Hal08]. By
formalizing the soundness and completeness proofs in Isabelle we can therefore
be almost absolutely certain that they are correct.

There is a research environment around the formalization of logics in Isabelle
called IsaFoL [IsaFoL] which this work is a part of. The focus of the IsaFoL
project is on formalizing modern research in automated reasoning used e.g. for
program verification.

http://isabelle.in.tum.de

8 Introduction

It is worth noting that the highest level of assurance is assigned by the Com-
mon Criteria standard to systems that have been formally verified as well as
tested [Cri12]. In conclusion, its application to program verification makes
formalized first-order logic worth studying.

1.2 Contributions

The main contributions of this thesis are a proof of completeness for closed
formulas for the natural deduction proof system NaDeA formalized in Isabelle
and an extension of this proof to open formulas by the addition of an inference
rule dubbed Subtle. Two versions of Subtle are given, one needed for the general
case of a formula being a consequence of a list of assumptions and a simpler one
for completeness of formulas valid by themselves. The soundness of NaDeA was
already established [VJS17], but the proof was reworked during this project and
extended to cover the extra rule.

NaDeA has been used at DTU for teaching purposes, lately in combination with
a system called ProofJudge which allows instructors to specify proofs that the
students must complete and hand in. Instructors can then give feedback on the
students’ proofs [Vil15]. These proofs can be developed online at:

https://nadea.compute.dtu.dk

The main result of this contribution can be seen in the Isabelle code below, that
is checked by Isabelle itself when generating the LATEX, cf. section 1.3 below.
The keyword abbreviation introduces a syntactic abbreviation that is unfolded
by the parser, while proposition is used before a statement and its proof.

abbreviation 〈valid p ≡ ∀ (e :: nat ⇒ nat) f g . semantics e f g p〉

proposition 〈valid p =⇒ semantics e f g p〉

using completeness-star soundness-star by blast

proposition 〈OK p [] = valid p〉 if 〈sentence p〉

using completeness soundness that by fast

abbreviation 〈check p ≡ OK-star p []〉

proposition 〈check = valid 〉

using completeness-star soundness-star by fast

https://nadea.compute.dtu.dk

1.2 Contributions 9

First the abbreviation valid p is introduced which hides three universally quan-
tified variables: e is the environment, while f and g correspond to F and G
respectively. The function semantics corresponds to v above, it takes e, f and g
and determines the truth value of the formula p. Thus by universally quantifying
e, f and g we have stated almost exactly what we mean when we say a formula
is valid, namely that it is true in every interpretation and environment. I say
almost because the domain has been fixed to the natural numbers since domains
are formalized as types in Isabelle and we cannot quantify over types with the
universal quantifier. The proposition on the next line proves that this does not
matter, as any valid formula is valid in the broader sense with e unrestrained.

The next proposition states that we can derive exactly the valid formulas in
the original NaDeA system, OK, if these are closed. This is proven using the
soundness and completeness proofs discussed later, by the proof method fast.
The abbreviation following that checks if a formula can be derived in the simplest
extension of NaDeA, OK_star. Finally the last proposition states that check
and valid are extensionally equal. This means that they agree on every input
and thus that we can derive exactly the valid formulas, even if they are open.

The completeness proof is based on the one described by Melvin Fitting in the
book First-Order Logic and Automated Theorem Proving [Fit96]. A formalization
of this and a natural deduction proof system was already formalized in Isabelle
by Stefan Berghofer under the name FOL-Fitting [Ber07a]. My formalization is
based on this, meaning that, disregarding my extensions, the lemmas and proofs
are roughly the same. Mine have however been modernized, as described below.
The NaDeA system is simpler than the one formalized by Berghofer: Negation
and truth are not built-in, the supporting functions are different and NaDeA has
only 14 inference rules against the 17 in FOL-Fitting. While this gives us fewer
rules to prove sound, there are also are fewer rules available for completeness.
One might imagine that some proof, while possible in FOL-Fitting, is impossible
in NaDeA because of a missing rule. Luckily, this is not the case. Berghofer’s
completeness proof assumes that the given sentence is true in all interpretations
with Herbrand terms and shows that it can be derived. Any generally valid
sentence must then also be derivable. The completeness proof for NaDeA makes
this explicit by assuming validity in any countably infinite domain.

Berghofer’s formalization is in the old procedural apply-style of Isabelle while
mine uses the newer declarative proof language Isar [Wen99]. Proofs in the old
style manipulate the goal through application of various rules whose effect is
hidden from the user, until a state is reached which either holds trivially or can
be shown using proof search. The declarative style instead states facts explicitly
in the source, using proof search to establish them from the previous ones. This
improves the presentation of the proof making it more readable and avoids the
need for various technical details needed in apply-style.

10 Introduction

1.3 Overview

The original NaDeA formalization is available and my extended version are
available, as NaDeA.thy and NaDeA_C.thy respectively, at:

https://github.com/logic-tools/nadea/tree/master/Isabelle

Excerpts are reprinted in this document. Every one of these excerpts except
a few type declarations is extracted as LATEX directly from the formalization.
During this process, Isabelle verifies that everything is correct. Since no sorry
or oops commands, which let you skip proofs, appear in the formalization, this
means that every formalized proof in this thesis truly has been formally verified.

The generated LATEX typesets Isabelle commands in bold. When referred to in
the text these are written in italics instead as this is less visually obtrusive.

The rest of this thesis is organized as follows.

• Chapter 2 introduces the Isabelle proof assistant via small examples and
verification of a functional implementation of the quicksort algorithm. The
proof language is explained along with different proof methods.

• Chapter 3 explains natural deduction proofs as they are typically presented
in a textbook. Example proofs are given in this textbook style.

• Chapter 4 and 5 formalize the syntax, semantics and inference rules of
NaDeA in Isabelle and presents formalized versions of the previous example
proofs. Especially the use of de Bruijn indices is discussed.

• Chapter 6 formalizes the soundness proof along with the necessary auxiliary
lemmas. It also gives a small consistency corollary.

• Chapter 7 describes the completeness proof given in Fitting’s book.

• Chapter 8 formalizes this completeness proof for NaDeA, and proves a
version of it that assumes validity in any countably infinite domain. A
formalization of the Löwenheim-Skolem theorem is also given.

• Chapter 9 describes my work to extend the completeness proof to cover
open formulas by extending NaDeA with a sound inference rule. Several
steps are required to do this, and the challenges of each step are covered.

• Chapter 10 concludes the project and discusses some of the gained insight.

https://github.com/logic-tools/nadea/tree/master/Isabelle

Chapter 2

Formalizations in Isabelle

This chapter aims to give a general introduction to formalizations in Isabelle
through small examples and to introduce the features used in the coming chapters.
It is based in part on The Isabelle/Isar Reference Manual [Wen16b].

2.1 Numbers and Lists

Data types in Isabelle resemble those in Standard ML and are introduced by a
similar declaration. For instance the natural numbers:

datatype mynat = Zero | Succ mynat

Or we can represent lists using a type variable which is applied in postfix notation:

datatype ′a mylist = Nil | Cons ′a 〈 ′a mylist〉

Isabelle will automatically prove various properties about these data types for
us, which are then available for proofs about them. We can also write functions

12 Formalizations in Isabelle

over data types and there are several ways of declaring these. Primitive recursive
functions where recursive calls are only allowed directly on constructor arguments
are declared with primrec as follows:

primrec plus :: 〈mynat ⇒ mynat ⇒ mynat〉 where
〈plus Zero m = m〉 |
〈plus (Succ n) m = Succ (plus n m)〉

After primrec we give the name of the function, here plus, and its type after
a double colon. This declaration terminates with the keyword where and the
next lines are the clauses of the function, one for each constructor of the data
type. The type as well as the clauses are enclosed in brackets separating the
HOL-specific types and terms from the outer Isabelle syntax [Wen16b].

Analogously to plus we can define functions for the length of a list and the result
of appending two lists:

primrec length :: 〈 ′a mylist ⇒ mynat〉 where
〈length Nil = Zero〉 |
〈length (Cons x xs) = Succ (length xs)〉

primrec append :: 〈 ′a mylist ⇒ ′a mylist ⇒ ′a mylist〉 where
〈append Nil ys = ys〉 |
〈append (Cons x xs) ys = Cons x (append xs ys)〉

Given these declarations we are now in a position to prove our first theorem. We
will prove that the length of one list appended to another is equal to the sum of
the lengths of the original lists. To do this we start by declaring the theorem we
want to prove and possibly give it a name, here length-append :

theorem length-append :
〈length (append xs ys) = plus (length xs) (length ys)〉

The variables xs and ys are automatically universally quantified. Next we need
to decide how to prove the given theorem. In this case we will use induction over
the first list, xs. This will split the goal into two cases, one for each constructor,
that we then need to prove. The case for Nil is proven thus:

2.1 Numbers and Lists 13

proof (induct xs)
case Nil
show ?case
by simp

next

The proof command initiates the structured proof using the chosen method; a
direct proof is done by using a hyphen instead of (induct xs). We specify which
case we are proving using case Nil and the intent to show it is declared on the
next line. Here ?case is a syntactic abbreviation introduced by Isabelle to stand
for the goal:

length (append Nil ys) = plus (length Nil) (length ys)

This is the original goal with xs replaced by Nil as we are in the base case of
the induction. Syntactic abbreviations like ?case are prefixed with a question
mark and unfolded by the parser. They may be introduced by the user using
either the is or let commands which will appear later.

The case is proven by simp, the Isabelle simplifier that tries to rewrite the given
terms, to unify them, here succesfully. This is done using their definitions and
any available facts about them. We use the next command to signify that this
case is proven and we are ready to move on to the next:

case (Cons x xs)
then show ?case
by simp

qed

Here case (Cons x xs) introduces names for the constructor arguments in this
case along with an assumption of the induction hypothesis:

length (append xs ys) = plus (length xs) (length ys)

By using the command then before the show, we make this assumption available
to the coming proof method. Again the case can be solved by the simplifier, and
as there are no more cases to prove, the proof is concluded with qed.

14 Formalizations in Isabelle

As both of these cases can be proven by the simplifier, we may use the following
syntax to prove the theorem more succinctly:

theorem 〈length (append xs ys) = plus (length xs) (length ys)〉
by (induct xs) simp-all

Here the by command takes two proof methods, the first sets up the induction
and the second, simp-all, solves the resulting cases using the simplifier.

It is worth noting that the namespaces of functions and theorems are separate,
so a theorem may be called the same as a function.

If we cannot or do not want to prove the subgoals immediately, we may introduce
intermediary facts in a proof using have. This is shown in the following first part
of a proof of the associativity of plus:

lemma 〈plus x (plus y z) = plus (plus x y) z 〉

proof (induct x)
case (Succ x)
have 〈plus (Succ x) (plus y z) = Succ (plus x (plus y z))〉
by simp

The have command can be prefixed with several keywords, e.g. then as used
before show above and moreover which will be used later. Below we prefix it
with also:

also have 〈. . . = Succ (plus (plus x y) z)〉
using Succ by simp

also have 〈. . . = plus (Succ (plus x y)) z 〉

by simp
also have 〈. . . = plus (plus (Succ x) y) z 〉

by simp
finally show ?case .

qed simp

This chains together a series of equalities with finally referring back to all of
them [Wen16b, p. 39]. The ellipsis refers to the right-hand side of the previous
result. This allows us to do a gradual rewrite of the the left-hand side of the
statement to match the right-hand side. Here the single period proof method
only succeeds if the two terms unify directly. The simp after the final qed applies
to any unsolved cases, here Zero.

2.2 Proof Methods 15

Non-recursive function can be introduced as definitions in the following way:

definition double :: 〈mynat ⇒ mynat〉 where
〈double n = plus n n〉

This adds a layer of indirection that can be unfolded to reveal the definition:

lemma 〈length (append xs xs) = double (length xs)〉
unfolding double-def by (simp add : length-append)

Here we are adding the lemma length-append to the simplifier, telling it that it
can use it as a rewrite rule. An alternative to this is declaring the lemma with
the [simp] attribute, which adds it globally.

2.2 Proof Methods

The simp, simp-all and period are far from the only available proof meth-
ods [Wen16b, p. 232].

The following lemma cannot be solved by simp-all and uses auto instead, which
combines the simplifier with classical reasoning.

lemma 〈(xs = append xs ys) = (ys = Nil)〉
by (induct xs) auto

When auto is not strong enough, force may be used, which performs a “rather
exhaustive search” using “many fancy proof tools” [Wen16b, p. 232]. As an
example force is powerful enough to automatically prove the following formulation
of Cantor’s diagonal argument that there are infinite sets which cannot be put
into one-to-one correspondence with the natural numbers [Wen16a]:

theorem Cantor : 〈@ f :: nat ⇒ nat set . ∀A. ∃ x . f x = A〉

by force

Though it should be noted that we gain no insight from such an automated
proof.

16 Formalizations in Isabelle

blast is an integrated classical tableau prover that is written to be very fast but
does not make use of simplification. The rich grandfather example from the
introduction can be proven directly in Isabelle with this proof method:

lemma 〈(∀ x . (¬ r(x) −→ r(f (x)))) −→ (∃ x . (r(x) ∧ r(f (f (x)))))〉
by blast

The proof method fast uses sequent-style proving and a breadth-first search
strategy where blast uses a more general strategy, but can be slower than fast.
With fast we may prove that if we have a set of lists which are constructed by
appending some list with itself, then any list we pick will have even length. The
assumptions are formulated using the symbol for higher-order implication, =⇒:

lemma 〈∀ xs ∈ A. ∃ ys. xs = append ys ys =⇒ us ∈ A =⇒
∃n. length us = plus n n〉

using length-append by fast

Here we are using the previous lemma length-append. This is a more general
method than then to make a previous result available to the proof method. The
above may also be proven with the fastforce method which is essentially like fast
but with access to the simplifier. While blast and fast use classical reasoning,
the method iprover uses only intuitionistic logic.

Finally the following chapters will make use of metis, an integrated theorem
prover for first-order logic that implements ordered paramodulation, an advanced
form of resolution [Wen16b, p. 292]. An example use of metis is given below
where we prove that if a number acts as the identity for plus, it must be zero:

lemma 〈∀ x . plus x y = x =⇒ y = Zero〉

using plus.simps(1) by metis

These proof methods allow us to take steps in the proof of a natural size,
comparative to what we would do on paper. The computer can handle all the
details allowing us to focus on the big picture and no matter which method,
internal or external, is used for finding a proof, this proof passes through Isabelle’s
small core of primitives ensuring its correctness.

2.3 Quicksort 17

2.3 Quicksort

With the basics covered, we now turn to the built-in list data type and look at
a complete Isabelle theory with a verification of quicksort. The theory starts
with a declaration of its name and any imports. Here we will need support for
multisets:

theory QuickSort imports ∼∼/src/HOL/Library/Multiset begin

We are going to verify the following implementation of quicksort where we use
the first element of the list as the pivot element, partition in smaller and larger
halves, recursively sort these and append the results. The element type ’a is
required to form a linear order so that we can compare elements of it:

fun quicksort :: 〈(′a::linorder) list ⇒ ′a list〉 where
〈quicksort [] = []〉 |
〈quicksort (x # xs) =
(let (as,zs) = partition (op ≥ x) xs
in quicksort as @ x # quicksort zs)〉

This function is not primitive recursive and is therefore declared with the fun
keyword. Recursive functions in Isabelle must terminate and this can be proven
automatically or manually. Since Isabelle knows that the partition function
does not return longer lists than its input, it is able to prove the termination of
quicksort automatically.

2.3.1 Permutation

The first thing we will prove is that the sorted list is a permutation of the original
list. This is formulated using multisets as follows:

lemma quicksort-permutes [simp]:
〈mset (quicksort xs) = mset xs〉

We will prove this lemma by induction over the recursive calls made by the
algorithm. Therefore we specify a custom induction rule when starting the proof:

18 Formalizations in Isabelle

proof (induct xs rule: quicksort .induct)
case 1
show ?case by simp

next

The above also proves the base case, corresponding to the first clause of quicksort,
using the simplifier. The first half of the next case is more interesting:

case (2 x xs)
moreover obtain as zs where 〈(as,zs) = partition (op ≥ x) xs〉

by simp

First we obtain names, x and xs, for the arguments of the constructor. Then we
obtain names, as and zs, for the result of the partitioning done by the algorithm,
allowing us to state properties of them. The keyword moreover means that we
are accumulating these facts behind the scenes — the induction hypothesis and
the origin of as and zs. Using moreover we can avoid having to come up with
names for all the intermediary facts making the presentation of the proof cleaner.
This style is used a lot in the remaining chapters for this reason. Next we will
prove that xs as a multiset is exactly the union of the multisets of as and zs.

moreover from this have 〈mset as + mset zs = mset xs〉

by (induct xs arbitrary : as zs) simp-all
ultimately show ?case
by simp

qed

We do this by induction over xs allowing arbitrary lists to stand in for as and zs
when applying the induction hypothesis; this allows simp-all to finish the proof.
The keywords from this give the proof method access to the previous fact like
with then, but unlike then are allowed after moreover. Any previously established
fact can take the place of this. Alternatively we could write using calculation(3)
before by, which would refer to the third fact in the chain of moreovers. The
keyword ultimately is another way of accessing the calculation and terminates
the chain. In this case it is appropriate because we are finished.

As a corollary we will prove the weaker result that the sets of the sorted and
original list are equal. This is done automatically with metis using the above
result and a fact about the equality of sets and multisets:

2.3 Quicksort 19

corollary set-quicksort [simp]:
〈set (quicksort xs) = set xs〉

using quicksort-permutes set-mset-mset by metis

This proof can be found using Isabelle’s sledgehammer tool that uses various
external solvers to essentially do proof search search. This is a very convenient
tool as it saves us from having to look through the lemmas in the multiset library
for anything appropriate, when it can be found automatically.

2.3.2 Sorting

Now we are in a position to prove that quicksort actually sorts its argument list.
Isabelle has a built-in function sorted that checks that a given list is sorted. The
base case is trivial:

lemma quicksort-sorts [simp]: 〈sorted (quicksort xs)〉
proof (induct xs rule: quicksort .induct)
case 1
show ?case by simp

next

The recursive case is more interesting. Again we obtain names for the lists
created by the call to partition, this time naming the fact *:

case (2 x xs)
obtain as zs where ∗: 〈(as,zs) = partition (op ≥ x) xs〉

by simp
then have 〈∀ a ∈ set as. ∀ z ∈ set (x # zs). a ≤ z 〉

using order-trans set-ConsD le-cases partition-P by metis
then have

〈∀ a ∈ set (quicksort as). ∀ z ∈ set (x # quicksort zs). a ≤ z 〉

by simp

Also above, we state that every element in as is smaller than or equal to the
pivot and the elements of zs. And because of the corollary above with the [simp]
attribute, we can extend this to the results of the recursive calls in the final line
above. A few more lines conclude the proof:

20 Formalizations in Isabelle

then have 〈sorted (quicksort as @ x # quicksort zs)〉
using ∗ 2 set-quicksort sorted-append sorted-Cons le-cases partition-P
by metis

then show ?case
using ∗ by simp

qed

Here we use lemmas from the standard library about when a list is sorted to
prove that the result of appending the recursive calls and the pivot is sorted,
knowing by the induction hypothesis that the recursive calls are sorted. Finally
we use the origin of as and zs to prove that quicksort (x # xs) is sorted.

Given the above lemmas we can prove the following theorem that our quicksort
acts exactly like the built-in sort function:

theorem sort-quicksort : 〈sort = quicksort〉
using properties-for-sort by (rule ext) simp-all

We are using the properties-for-sort lemma which states the following:

mset ?ys = mset ?xs =⇒ sorted ?ys =⇒ sort ?xs = ?ys

The premises match quicksort-permutes and quicksort-sorts perfectly allowing
us to conclude quicksort xs = sort xs. To turn this into the proof quicksort =
sort we apply the rule ext which states:

(
∧
x . ?f x = ?g x) =⇒ ?f = ?g

Namely that if two functions give the same results for every input then we can
conclude that the two functions are themselves equal. The application of rule as
the initial proof method rewrites the goal using its argument.

Finally we can end the theory having verified that quicksort is functionally
equivalent to the built-in sort.

end

Chapter 3

Proofs in Natural Deduction

3.1 Natural Deduction in a Textbook

To understand the formalization of proofs in natural deduction, it is instructive
first to consider how they are done in a textbook, here Logic in Computer Science
— Modelling and Reasoning about Systems by Huth and Ryan [HR04].

3.1.1 On Substitution

Before looking at the inference rules we need to understand the concept of
substitution, as this is central to the treatment of quantifiers in natural deduction.
The following definition for substitution is given in the considered textbook [HR04,
p. 105 top]:

Given a variable x, a term t and a formula φ we define φ[t/x] to be
the formula obtained by replacing each free occurrence of variable x
in φ with t.

22 Proofs in Natural Deduction

A definition for what it means that “t must be free for x in φ” follows shortly
after [HR04, p. 106 top].

Given a term t, a variable x and a formula φ, we say that t is free
for x in φ if no free x leaf in φ occurs in the scope of ∀y or ∃y for
any variable y occurring in t.

Here the syntax tree of the formula is considered, explaining the use of the term
leaf. The following quote [HR04, p. 106 bottom] emphasizes the side conditions:

It might be helpful to compare “t is free for x in φ” with a precondition
of calling a procedure for substitution. If you are asked to compute
φ[t/x] in your exercises or exams, then that is what you should
do; but any reasonable implementation of substitution used in a
theorem prover would have to check whether t is free for x in φ and,
if not, rename some variables with fresh ones to avoid the undesirable
capture of variables.

As we will see, these complications are made explicit in the formalization by
simple functional programs.

3.1.2 Natural Deduction Rules

Next follows the natural deduction rules as described in the literature [HR04].
The first 9 are rules for classical propositional logic and the last 4 are for first-
order logic. Intuitionistic logic can be obtained by omitting the rule PBC (proof
by contradiction, called “Boole” later) and adding the ⊥-elimination rule (also
known as the rule of explosion) [Sel89].

Besides PBC which is a little special, the rules act as either introduction (I) or
elimination (E) rules for the logical connectives and quantifiers. The way to read
rules like this is that, having derived the formulas above the line we may derive
the one below the line. The rules are as follows with names given to the right of
the line:

3.1 Natural Deduction in a Textbook 23

¬φ
...
⊥
φ

PBC
φ φ→ ψ

ψ
→ E

φ
...
ψ

φ→ ψ
→ I

φ ∨ ψ

φ
...
χ

ψ
...
χ

χ ∨E
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2

φ ∧ ψ
φ

∧E1
φ ∧ ψ
ψ

∧E2
φ ψ

φ ∧ ψ ∧I

∃xφ

x0 φ [x0/x]
...
χ

χ ∃E
φ [t/x]

∃xφ ∃I

∀xφ
φ [t/x]

∀E

x0
...

φ [x0/x]

∀xφ ∀I

With the following side conditions to rules for quantifiers:

• ∃E: x0 does not occur outside its box (and therefore not in χ).

• ∃I: t must be free for x in φ.

• ∀E: t must be free for x in φ.

• ∀I: x0 is a new variable which does not occur outside its box.

24 Proofs in Natural Deduction

Consider for instance the elimination rule for disjunction, ∨E. It includes three
premises, first that we know either φ or ψ (or both) can be derived, φ∨ψ. Second
and third that assuming φ respectively ψ holds we can derive χ. Knowing these
three things, the rule allows us to derive χ. This makes sense intuitively; if φ
holds, we can use the second premise to prove χ, while if ψ holds we can use the
third. If both do we may use either. In all cases we have proven χ justifying the
soundness of this rule.

Consider now the elimination rule for the universal quantifier, ∀E, as an example
of how substitution might go wrong without the side condition. We might,
hypothetically, have a proof of ∀x.∃y.P (x, y). If we apply the rule ignoring the
side condition, we might get ∃y.P (y, y). But this is clearly not the same, as the
x and y may always be distinct in the first formula.

In addition to the rules above, the textbook formulation requires a special
copy rule [HR04, p. 20] described below. The copy rule is not needed in the
formalization due to the way it manages a list of assumptions.

A final rule is required in order to allow us to conclude a box with a
formula which has already appeared earlier in the proof. [...] The
copy rule entitles us to copy formulas that appeared before, unless
they depend on temporary assumptions whose box has already been
closed.

As it can be seen, there are no rules for truth or negation, but the following
equivalences can be used:

> ≡ ⊥ → ⊥
¬A ≡ A→ ⊥

3.2 Example Proofs

Let us construct some proofs using natural deduction to get a feel for the rules.

3.2.1 Modus Tollens

As a first example, we may prove the modus tollens principle which has no
quantifiers. Modus tollens states that if A implies B and B does not hold, then A

3.2 Example Proofs 25

cannot hold (for if A did hold then so would B because of the implication, but this
is a contradiction). It can be encoded in first-order logic as (A→ B)∧¬B → ¬A
or, using the above equivalence to avoid negation, as:

(A→ B) ∧ (B → ⊥)→ (A→ ⊥)

Instead of the boxes to represent assumptions, the more compact turnstile
notation with assumptions to the left of ` and the conclusion to the right will
be used. This is similar to what is done in the formalization. Futhermore the
assumptions will be abbreviated with . . . when they do not change between steps.

A natural deduction proof starts from its conclusion:

` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

Now we look at the rules and see which ones have something similar as their
conclusion. Given that the outermost logical connective is an implication, the
proof will start with an implication introduction:

(A→ B) ∧ (B → ⊥) ` A→ ⊥
→ I` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

We still have an implication outermost, so another implication introduction
seems like a good choice:

A, (A→ B) ∧ (B → ⊥) ` ⊥
→ I

(A→ B) ∧ (B → ⊥) ` A→ ⊥
→ I` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

Now we need to prove ⊥ and we see that we have B → ⊥ stuffed away in the
assumptions, so let use → E to try and utilise that. This leaves a choice of what
to instantiate ψ with, as it only occurs above the line. Given that we want to
use B → ⊥ we set ψ = B. This adds two new premises to prove:

. . . ` B → ⊥ . . . ` B → E
A, (A→ B) ∧ (B → ⊥) ` ⊥

→ I
(A→ B) ∧ (B → ⊥) ` A→ ⊥

→ I` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

26 Proofs in Natural Deduction

The left one can be discharged by the ∧E2 rule and an appeal to the assumptions:

. . . ` (A→ B) ∧ (B → ⊥)
∧E2

. . . ` B → ⊥ A, (A→ B) ∧ (B → ⊥) ` B
→ E

A, (A→ B) ∧ (B → ⊥) ` ⊥
→ I

(A→ B) ∧ (B → ⊥) ` A→ ⊥
→ I` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

The right one is proven similarly, leaving us with the following final proof:

. . . ` (A→ B) ∧ (B → ⊥)
∧E2

. . . ` B → ⊥

. . . ` (A→ B) ∧ (B → ⊥)
∧E1

. . . ` A→ B . . . ` A → E
. . . ` B → E

A, (A→ B) ∧ (B → ⊥) ` ⊥
→ I

(A→ B) ∧ (B → ⊥) ` A→ ⊥
→ I` (A→ B) ∧ (B → ⊥)→ (A→ ⊥)

3.2.2 Socrates is Mortal

Next to exercise a quantifier rule and substitution let us prove Aristotle’s syllogism
encoded in first-order logic:

(∀x.h(x)→ m(x)) ∧ h(s)→ m(s)

Here h(x) can be read as x is human, m(x) as x is mortal and s as Socrates. So
if everyone who is human is also mortal and Socrates is human then Socrates
must be mortal. Again the proof starts with an implication introduction:

(∀x.h(x)→ m(x)) ∧ h(s) ` m(s)
→ I` (∀x.h(x)→ m(x)) ∧ h(s)→ m(s)

Next we see that the implication in our assumptions could probably be used, so
we do an implication elimination giving us two new premises to prove:

. . . ` h(s)→ m(s) . . . ` h(s)
→ E

(∀x.h(x)→ m(x)) ∧ h(s) ` m(s)
→ I` (∀x.h(x)→ m(x)) ∧ h(s)→ m(s)

3.2 Example Proofs 27

The right one can be derived from the assumptions using ∧E2 as previously, but
the left one requires the use of a previously unused rule, ∀E:

. . . ` (∀x.h(x)→ m(x)) ∧ h(s)
∧E1

. . . ` ∀x.h(x)→ m(x)
∀E

. . . ` h(s)→ m(s)

. . . ` (∀x.h(x)→ m(x)) ∧ h(s)
∧E2

. . . ` h(s)
→ E

(∀x.h(x)→ m(x)) ∧ h(s) ` m(s)
→ I` (∀x.h(x)→ m(x)) ∧ h(s)→ m(s)

The side condition for ∀E says that s must be free for x in ∀x.h(x)→ m(x) but
this is evidently the case as s does not appear in the formula at all. Thus we
can derive (h(x)→ m(x))[s/x] which simplifies to h(s)→ m(s) and the proof is
complete after obtaining this from the assumptions.

Thus we have seen how to decompose a statement into obviously true cases using
fairly natural rules.

28 Proofs in Natural Deduction

Chapter 4

Formalizing Syntax and
Semantics

To work with first-order logic and natural deduction in Isabelle, we first need to
formalize the syntax and semantics of formulas.

4.1 Syntax

Let us consider first how to define the syntax so we can work with it in Isabelle.

4.1.1 Terms

We use a type synonym id for strings as these are used as identifiers for function
and predicate symbols. Next the terms are defined. The functions are straight-
forward but the variables use de Bruijn-indexing which needs an explanation.

type-synonym id = 〈char list〉

datatype tm = Var nat | Fun id 〈tm list〉

30 Formalizing Syntax and Semantics

4.1.1.1 De Bruijn Indices

Instead of referring to variables with a name, x, y, etc. as we do on paper, the
formalization uses natural numbers, 0, 1, and so on. The number specifies how
many quantifiers you need to cross to get to the one which bound the variable.
For instance, the formula ∀x.∃y.P (x, f(y)) becomes ∀∃P (1, f(0)) using de Bruijn
indices: The x has one quantifier between its use and the quantifier binding
it so its index is 1, and equivalently y becomes 0. This representation is an
advantage when doing substitutions which will be discussed in section 5.1.2.
Another advantage is that formulas which are equivalent up to a change of
variable names, like ∀x.P (x) and ∀y.P (y), are now represented equally, ∀P (0),
so we can compare them using just structural equality [Bru72].

4.1.2 Formulas

Given the terms, the syntax of formulas is easily defined:

datatype fm = Falsity | Pre id 〈tm list〉 |
Imp fm fm | Dis fm fm | Con fm fm | Exi fm | Uni fm

There is a constant, Falsity, for⊥, and a constructor, Pre, for predicates that takes
an identifier and a list of terms. Furthermore each of the logical connectives we
need get a binary constructor: Imp for→, Dis for ∨ and Con for ∧. Finally each
of the quantifiers are given a unary constructor: Exi for existential quantification,
∃, and Uni for universal quantification, ∀. Note that because of the use of de
Bruijn indices, the quantifiers need only take the quantified formula as argument;
the variable is bound implicitly.

4.2 Semantics

Given the syntax, the semantics can now be defined.

4.2.1 Terms

The semantics of terms is defined first, as that of formulas depend on it. Two mu-
tually, primitive recursive functions are defined, one for a single term, semantics-

4.2 Semantics 31

term, and one for a list of terms, semantics-list :

primrec
semantics-term :: 〈(nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a〉 and
semantics-list :: 〈(nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list〉

where
〈semantics-term e f (Var n) = e n〉 |
〈semantics-term e f (Fun i l) = f i (semantics-list e f l)〉 |
〈semantics-list e f [] = []〉 |
〈semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l 〉

It it instructive to look at the types, noting that ’a corresponds to the domain
D so a value of type ’a corresponds to an element of D. The first argument, e,
corresponds to the environment and maps variables encoded as natural numbers
to values of type ’a. The second argument, f, corresponds to F . As such it goes
from an identifier, the function symbol, and a list of terms to ’a.

A variable is looked up in the environment as evident in the first clause. For a
function symbol, the list of terms is evaluated and the result is looked up in f
along with the identifier. The function semantics-list is a specialization of map.

4.2.2 Formulas

Given the semantics of terms, that of formulas is defined below. Isabelle’s own
boolean values, True and False are used for the truth values T and F respectively.

primrec
semantics :: 〈(nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ bool)
⇒ fm ⇒ bool 〉 where

〈semantics e f g Falsity = False〉 |
〈semantics e f g (Pre i l) = g i (semantics-list e f l)〉 |
〈semantics e f g (Imp p q) =
(if semantics e f g p then semantics e f g q else True)〉 |

〈semantics e f g (Dis p q) =
(if semantics e f g p then True else semantics e f g q)〉 |

〈semantics e f g (Con p q) =
(if semantics e f g p then semantics e f g q else False)〉 |

〈semantics e f g (Exi p) =
(∃ x . semantics (λn. if n = 0 then x else e (n − 1)) f g p)〉 |

〈semantics e f g (Uni p) =
(∀ x . semantics (λn. if n = 0 then x else e (n − 1)) f g p)〉

32 Formalizing Syntax and Semantics

The first clause evaluates Falsity to False and the second clause looks up a
predicate in g similarly to the evaluation of function symbols. The next three
clauses specify the meaning of the logical connectives using if-then-else. It is
possible to use Isabelle’s own logical connectives instead for a somewhat more
direct encoding of the semantics, but this is arguably harder for students coming
from normal programming languages to understand.

The final two clauses use Isabelle’s own quantifiers. These have the same meaning
as discussed previously, namely that the containing formula must hold for some,
respectively, all x. There may be infinitely many values of type ’a, so we cannot
naively check them all as we would have to do in a normal programming language.
Thus access to these quantifiers in Isabelle itself is essential for a proper encoding
of the semantics of first-order logic.

In the quantifier cases, the σ[x← d] notation used in the introduction is encoded
using if-then-else. This encoding is a consequence of the de Bruijn indexing.
Consider the concrete formula ∀a.∀b.∃c.P (2, 1, 0) where the quantifiers are named
for convenience. Then when evaluating ∃c.P (2, 1, 0), e associates 0 with ∀b and
1 with ∀a as we have not crossed the existential quantifier yet. But when
evaluating P (2, 1, 0), e should associate 0 with ∃c instead, 1 with ∀b and 2 with
∀a; everything has been shifted up. To emulate this, in the last two clauses, a
different environment than the one given as argument is used in the recursive
calls. In the new environment, variable 0 maps directly to the quantified x as
wanted. For a variable n 6= 0, n − 1 is looked up in the old environment to
account for quantifier, effectively doing the shifting by decrementing the variable.

Chapter 5

Formalizing Natural
Deduction

We need to write a few functional programs before we can formalize the rules of
natural deduction. These are developed first, then the formalized rules are given
and finally the chapter concludes with some examples of proofs within Isabelle.

5.1 Utilities

Besides the ones described below, a function member with the suggested meaning
is defined. Note that this benefits from the use of de Bruijn indices, as described
in chapter 4, because formulas can be compared structurally.

5.1.1 New Constants

When eliminating the existential and introducing the universal quantifier, the
side conditions state that the used constant must be new. To enforce this, the
functions of the following types are defined to check that an identifier name is
new:

34 Formalizing Natural Deduction

new-term :: 〈id ⇒ tm ⇒ bool 〉 and
new-list :: 〈id ⇒ tm list ⇒ bool 〉
new :: 〈id ⇒ fm ⇒ bool 〉
news :: 〈id ⇒ fm list ⇒ bool 〉

The only interesting case is in new-term where the passed in identifier c is
compared to the i of the inspected Fun i l : If they are equal, false is returned,
otherwise new-list c l is called to ensure c is also new in l. The rest are
straightforward primitive recursions over either lists or formulas.

5.1.2 Substitution

The invention of de Bruijn indexes was to make substitutions (in the lambda
calculus) simpler [Bru72], but the details can still be somewhat tricky. The
substitution defined here is meant to be used specifically after removing a
quantifier, as in the natural deduction rules.

Consider the formula ∀∃P (0, 1) where we want to specialize the outer quantified
variable to some term t using the ∀E rule. The quantified variable has index
0 by definition, so the substitution becomes (∃P (0, 1))[t/0]. It is tempting to
reduce this to ∃(P (0, 1)[t/0]) and then ∃P (t, 1), replacing 0 by t, but this would
be wrong. Variable 0 in ∀∃P (0, 1) refers to the existential, not the universal
quantifier. Instead, we need to increment the variable we are substituting for
when crossing a quantifier. This gives us the correct sequence:

(∃P (0, 1))[t/0] ; ∃(P (0, 1)[t/1]) ; ∃P (0, t)

Unfortunately this is not the only complication. Imagine that t contains a
variable, e.g. t = f(0) referring to the nearest quantifier, and observe what
happens when we do the substitution again:

(∃P (0, 1))[f(0)/0] ; ∃(P (0, 1)[f(0)/1]) ; ∃P (0, f(0))

Now the 0 refers to the existential quantifier, but we meant it to refer to the one
beyond that, variable 0 in the outer environment. Therefore when crossing a
quantifier we need to increment not only the variable we are substituting for,
but also the variables in the term we are inserting:

5.1 Utilities 35

(∃P (0, 1))[f(0)/0] ; ∃(P (0, 1)[f(1)/1]) ; ∃P (0, f(1))

This is done with the following two functions:

primrec
inc-term :: 〈tm ⇒ tm〉 and
inc-list :: 〈tm list ⇒ tm list〉 where
〈inc-term (Var n) = Var (n + 1)〉 |
〈inc-term (Fun i l) = Fun i (inc-list l)〉 |
〈inc-list [] = []〉 |
〈inc-list (t # l) = inc-term t # inc-list l 〉

Alas we have forgotten something. The substitution is performed after removing
a quantifier, but there might be variables that pointed beyond that quantifier;
now these all point one level too far! The function that does substitution on
terms handles this by comparing the variable we substitute for (corresponding
to the number of quantifiers crossed) with the encountered variable and acting
accordingly:

primrec
sub-term :: 〈nat ⇒ tm ⇒ tm ⇒ tm〉 and
sub-list :: 〈nat ⇒ tm ⇒ tm list ⇒ tm list〉 where
〈sub-term v s (Var n) =
(if n < v then Var n else if n = v then s else Var (n − 1))〉 |

〈sub-term v s (Fun i l) = Fun i (sub-list v s l)〉 |
〈sub-list v s [] = []〉 |
〈sub-list v s (t # l) = sub-term v s t # sub-list v s l 〉

Finally all the bits can be put together to define substitution on formulas:

primrec sub :: 〈nat ⇒ tm ⇒ fm ⇒ fm〉 where
〈sub v s Falsity = Falsity〉 |
〈sub v s (Pre i l) = Pre i (sub-list v s l)〉 |
〈sub v s (Imp p q) = Imp (sub v s p) (sub v s q)〉 |
〈sub v s (Dis p q) = Dis (sub v s p) (sub v s q)〉 |
〈sub v s (Con p q) = Con (sub v s p) (sub v s q)〉 |
〈sub v s (Exi p) = Exi (sub (v + 1) (inc-term s) p)〉 |
〈sub v s (Uni p) = Uni (sub (v + 1) (inc-term s) p)〉

36 Formalizing Natural Deduction

5.2 Formalized Rules

The full set of rules is given below as an inductive definition. OK p z means
that the formula p can be derived from the list of assumptions z, resembling the
turnstile notation introduced in chapter 3, which would be z ` p.

inductive OK :: 〈fm ⇒ fm list ⇒ bool 〉 where
Assume: 〈member p z =⇒ OK p z 〉 |
Boole: 〈OK Falsity ((Imp p Falsity) # z) =⇒ OK p z 〉 |
Imp-E : 〈OK (Imp p q) z =⇒ OK p z =⇒ OK q z 〉 |
Imp-I : 〈OK q (p # z) =⇒ OK (Imp p q) z 〉 |
Dis-E : 〈OK (Dis p q) z =⇒ OK r (p # z) =⇒ OK r (q # z) =⇒ OK

r z 〉 |
Dis-I1 : 〈OK p z =⇒ OK (Dis p q) z 〉 |
Dis-I2 : 〈OK q z =⇒ OK (Dis p q) z 〉 |
Con-E1 : 〈OK (Con p q) z =⇒ OK p z 〉 |
Con-E2 : 〈OK (Con p q) z =⇒ OK q z 〉 |
Con-I : 〈OK p z =⇒ OK q z =⇒ OK (Con p q) z 〉 |
Exi-E : 〈OK (Exi p) z =⇒ OK q ((sub 0 (Fun c []) p) # z) =⇒
news c (p # q # z) =⇒ OK q z 〉 |

Exi-I : 〈OK (sub 0 t p) z =⇒ OK (Exi p) z 〉 |
Uni-E : 〈OK (Uni p) z =⇒ OK (sub 0 t p) z 〉 |
Uni-I : 〈OK (sub 0 (Fun c []) p) z =⇒ news c (p # z) =⇒ OK (Uni p)

z 〉

Worthy of mention is the Assume rule allowing us to conclude any formula in
the assumptions and obviating the need for a special copy rule. Each rule is
effectively a function from premises and side conditions to a conclusion. Take
for instance the Exi-E rule. By providing a proof, OK (Exi p) z, of formula
Exi p from assumptions z, a proof of q with access to p[c/0] as an additional
assumption, and a proof, news c (p # q # z), that c is new to both formulas
and assumptions, we can obtain a proof, OK q z, that q can be derived from z.

5.3 Example Proofs

With the rules formalized in Isabelle it is now possible to prove some formulas
within the formalization.

5.3 Example Proofs 37

5.3.1 Reflexivity

Below is a proof of p→ p using the declarative proof style.

lemma 〈OK (Imp (Pre ′′p ′′ []) (Pre ′′p ′′ [])) []〉

proof −
have 〈OK (Pre ′′p ′′ []) [(Pre ′′p ′′ [])]〉 by (rule Assume) simp
then show 〈OK (Imp (Pre ′′p ′′ []) (Pre ′′p ′′ [])) []〉 by (rule Imp-I)

qed

The proof visually resembles the textbook proof with the proven formula last,
along with the inference rule → I/Imp-I, and the premise on the line above:

p ` p
→ I` p→ p

5.3.2 Modus Tollens

In the declarative style, the axioms appear before the conclusions. For longer
proofs the procedural proof style can be more applicable because it allows us
to work from the conclusion and back to the axioms more easily. The proof of
modus tollens from section 3.2.1 might look like the following using this style.

lemma modus-tollens: 〈OK (Imp
(Con (Imp (Pre ′′p ′′ []) (Pre ′′q ′′ [])) (Imp (Pre ′′q ′′ []) Falsity))
(Imp (Pre ′′p ′′ []) Falsity)) []〉

apply (rule Imp-I)
apply (rule Imp-I)
apply (rule Imp-E)
apply (rule Con-E2)
apply (rule Assume)
apply simp
apply (rule Imp-E)
apply (rule Con-E1)
apply (rule Assume)
apply simp
apply (rule Assume)
apply simp
done

38 Formalizing Natural Deduction

Here the intermediate steps are not visible as with the declarative approach, but
after applying a rule, Isabelle automatically introduces the required premises as
new subgoals that can be proven by further application of rules. The indentation
of the apply command matches the number of subgoals. In this style the premises
of a rule are proven after they are used, resembling how the proof is prepared.
The formalized proof uses specific predicates p and q instead of arbitrary formulas
A and B, but since the proof does not rely on p and q being predicates, treating
them like arbitrary formulas, the proofs can be considered equivalent.

5.3.3 Socrates is Mortal

An example that provides a few more complications when formalized in the
procedural style is Aristotle’s syllogism about Socrates. The textbook proof was
given in section 3.2.2 and the formalized proof can be seen below.

lemma Socrates-is-mortal : 〈OK (Imp
(Con (Uni (Imp (Pre ′′h ′′ [Var 0]) (Pre ′′m ′′ [Var 0])))

(Pre ′′h ′′ [Fun ′′s ′′ []]))
(Pre ′′m ′′ [Fun ′′s ′′ []])) []〉

apply (rule Imp-I)
apply (rule Imp-E [where p=〈Pre ′′h ′′ [Fun ′′s ′′ []]〉])
apply (subgoal-tac 〈OK (sub 0 (Fun ′′s ′′ [])

(Imp (Pre ′′h ′′ [Var 0]) (Pre ′′m ′′ [Var 0]))) -〉)
apply simp
apply (rule Uni-E)
apply (rule Con-E1)
apply (rule Assume)
apply simp
apply (rule Con-E2)
apply (rule Assume)
apply simp
done

Two things are worth noting. First the application of the Imp-E rule comes
before the premises, so Isabelle is unable to tell that formula p should be h(s),
only that the two new subgoals should be that p implies the current goal and
that p itself can be proven. To resolve this issue, p is specified explicitly when
applying the rule using [where p=. . .].

Second the Uni-E rule expects the goal to be of the form OK (sub 0 t p) z, in
our case

5.3 Example Proofs 39

OK (sub 0 (Fun ′′s ′′ []) (Imp (Pre ′′h ′′ [Var 0]) (Pre ′′m ′′ [Var 0]))) -

but what the state actually is at this point in the proof is

OK (Imp (Pre ′′h ′′ [Fun ′′s ′′ []]) (Pre ′′m ′′ [Fun ′′s ′′ []])) -

An underscore is used which Isabelle renders as a hyphen but more importantly
fills in automatically with the correct list of assumptions. We can recognize that
by performing the substitution in the first goal we reach the second, so the two
are equivalent, but the system does not do this automatically. Therefore the first
goal is introduced as a subgoal using subgoal-tac, effectively rewriting the goal.
To be able to do this however, we need to prove that the first formula implies
the second, so that by proving the first we have actually proven the second; this
is easily done using the simplifier. After discharging that goal the remaining
goal has the correct form and the Uni-E rule can be applied.

Thus with a little work the textbook examples can be formalized and checked by
Isabelle. This ensures that the rules are applied correctly and no subgoals are
forgotten, ensuring that the proof is reduced down to axioms.

40 Formalizing Natural Deduction

Chapter 6

Formalizing Soundness

With the syntax, semantics and inference rules formalized, we are now in a
position to formally prove the soundness of the rules. That is, that the rules can
only be used to derive valid formulas. The proof will be by induction over the
inference rules. The base case for the induction will be the Assume rule which is
not premised on any other proofs and the rest of the rules are proven as part of
the induction step. Thus we can assume that the premises they rely on are valid
formulas and we need to show that the formula derived by the rule using these
premises is also valid. If these things hold the induction principle states that we
can only derive valid formulas and Isabelle is able to apply this reasoning for us.

6.1 Lemmas

Before the main theorem we need to prove some auxiliary lemmas to help us.
This decomposition has the additional benefit of making it easier to understand
and to maintain the proofs because each proof in itself can be shorter.

42 Formalizing Soundness

6.1.1 Built-In Logical Connectives

While the semantics are formalized using if-then-else, Isabelle is better at reason-
ing about the equivalent logical connectives directly. Therefore an equivalence
between the two is proven and added to the simplifier:

lemma symbols [simp]:
〈(if p then q else True) = (p −→ q)〉
〈(if p then True else q) = (p ∨ q)〉
〈(if p then q else False) = (p ∧ q)〉
by simp-all

Adding a lemma like this to the simplifier is an obvious choice as it would only
clutter the rest of the proofs if we were to add it explicitly every time.

6.1.2 Environment Extension

Furthermore the extension of the environment used for the semantics of quan-
tifiers, as explained in chapter 4, is declared as its own function, put, and the
equivalence added to Isabelle’s simplifier. This makes it easier to prove lemmas
about put later.

fun put :: 〈(nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a〉 where
〈put e v x = (λn. if n < v then e n else if n = v then x else e (n − 1))〉

lemma simps [simp]:
〈semantics e f g (Exi p) = (∃ x . semantics (put e 0 x) f g p)〉
〈semantics e f g (Uni p) = (∀ x . semantics (put e 0 x) f g p)〉
by simp-all

Two such lemmas are the following. The first, increment, describes a relation
between the semantic put, and the syntactic inc-term and inc-list functions:

lemma increment :
〈semantics-term (put e 0 x) f (inc-term t) = semantics-term e f t〉
〈semantics-list (put e 0 x) f (inc-list l) = semantics-list e f l 〉
by (induct t and l rule: semantics-term.induct semantics-list .induct)

simp-all

6.1 Lemmas 43

Looking just at the top part, the left hand side has an incremented term, inc-term
t, where every variable has been incremented, and an environment, put e 0 x,
where some term x has been put at index 0 and the rest of the indices are shifted
one up compared to e. The lemma states that the semantics of the incremented
term in the shifted environment is the same as the semantics of the original term
in the original environment. The reasoning being that increments and shifts
align perfectly. This is proven by mutual induction over the mutually recursive
calls made by inc-term and inc-list and the four resulting subgoals are proven
automatically by the simplifier.

Moreover a commutation property of put is proven automatically by Isabelle:

lemma commute: 〈put (put e v x) 0 y = put (put e 0 y) (v + 1) x 〉

by fastforce

It states that putting a new value x at index v and then another value y at index
0 is equivalent to first putting y at 0 and then x at v+1, where v is incremented
to account for the already put y.

6.1.3 New Constants

The following lemma relates the new, news and list-all functions and is proven
by structural induction over the list of formulas z. If c is new for every element
of z then news c z and vice versa.

lemma allnew [simp]: 〈list-all (new c) z = news c z 〉

by (induct z) simp-all

If a constant does not appear in a term/formula, it should make no difference
for the semantics what value the constant has in the interpretation. This is
demonstrated by the following two lemmas.

lemma map ′ [simp]:
〈new-term n t =⇒
semantics-term e (f (n := x)) t = semantics-term e f t〉

〈new-list n l =⇒
semantics-list e (f (n := x)) l = semantics-list e f l 〉

by (induct t and l rule: semantics-term.induct semantics-list .induct)
auto

44 Formalizing Soundness

lemma map [simp]:
〈new n p =⇒ semantics e (f (n := x)) g p = semantics e f g p〉

by (induct p arbitrary : e) simp-all

Here f(n := x) means the same as the f [n← x] notation used in the introduction.
That is, the same function as f, except for input n where the value is now x.
Since n is new in t, l and p respectively, the two sides of the equal sign are equal
in all three cases. For map the induction is over arbitrary e because, as discussed
previously regarding the semantics, the recursive call in the quantifier cases is
made on an updated environment.

It is useful to extend the map lemma to a list of formulas. This is done in two
steps. First as allmap’ using list-all and new and by induction over the list of
formulas. Since the simplifier has access to map the two induction cases are
automatically proven.

lemma allmap ′ [simp]: 〈list-all (λp. new c p) z =⇒
list-all (semantics e (f (c := m)) g) z = list-all (semantics e f g) z 〉

by (induct z) simp-all

Second as allmap which uses news directly to specify the freshness constraint.
This is proven automatically because allnew, which expresses exactly that the
premise of allmap’ and allmap are equivalent, was added to the simplifier.

lemma allmap [simp]: 〈news c z =⇒
list-all (semantics e (f (c := m)) g) z = list-all (semantics e f g) z 〉

by simp

6.1.4 Substitution

Finally we need a substitution lemma before tackling the main soundness proof.
For terms and lists of terms it is proven similarly to some of the other lemmas:

lemma substitute ′ [simp]:
〈semantics-term e f (sub-term v s t) =
semantics-term (put e v (semantics-term e f s)) f t〉

〈semantics-list e f (sub-list v s l) =
semantics-list (put e v (semantics-term e f s)) f l 〉
by (induct t and l rule: semantics-term.induct semantics-list .induct)

simp-all

6.1 Lemmas 45

This relates the syntactic variables and semantic environments, and expresses
that the semantics of a term t[s/v], where s is substituted for variable v, is
exactly the same as the semantics of the original term t in the same environment
except semantics-term e f s has been put at index v. This formalizes the notion
we have of the correspondence between substitution and the environment: The
value of a variable is looked up in the environment, so we can also just substitute
it with that value beforehand and vice versa. Extending this to formulas is done
by induction over the formula and requires a little bit of manual proving in the
quantifier cases. The induction is over arbitrary e, v and t so the induction
hypothesis can be applied at different values of these. These cases are similar,
so only the existential case is shown below. The proof is done by rewriting the
left-hand side of the equal sign into the right.

lemma substitute [simp]:
〈semantics e f g (sub v t p) =
semantics (put e v (semantics-term e f t)) f g p〉

proof (induct p arbitrary : e v t)
case (Exi p)
have 〈semantics e f g (sub v t (Exi p)) =

(∃ x . semantics (put e 0 x) f g (sub (v + 1) (inc-term t) p))〉
by simp

also have 〈. . . = (∃ x . semantics (put (put e 0 x) (v + 1)
(semantics-term (put e 0 x) f (inc-term t))) f g p)〉

using Exi by simp
also have 〈. . . =

(∃ x . semantics (put (put e v (semantics-term e f t)) 0 x) f g p)〉
using commute increment(1) by metis

finally show ?case
by simp

The first have is derived from the definition of semantics and sub. The next
have is obtained using the induction hypothesis with e = put e 0 x, v = v + 1
and t = inc-term t. It is now apparent that put e 0 x cancels out with inc-term
using increment. The third have does this rewriting and also rewrites the puts
using the commute lemma. This final line matches the definition of semantics in
the Exi case so from there the case can be proven by the simplifier.

This is the only place the increment and commute lemmas are used which is
why I have not added them to the simplifier. These lemmas enable slightly large
steps to be taken and it is helpful when reading the proof to see immediately
what justifies the step.

It is noted elsewhere that there are numerous subtleties in the use of de Bruijn
indices with regards to the substitution lemma [BU07]. These subtleties are

46 Formalizing Soundness

formalized here in terms of the commute and increment lemmas and any others
are handled automatically by Isabelle’s simplifier. If one really wants to un-
derstand this proof, these subtleties may pose a problem, and using a nominal
approach [BU07] with disciplined names over raw indices may be a better fit.

6.2 Soundness

Soundness is proven in two steps, first as the lemma soundness’ that allows
arbitrary assumptions which are all assumed valid and then as the theorem
soundness with no assumptions which follows easily from this. First of all a
lemma is introduced that makes proofs using the Assume rule easier going
forward.

lemma member-set [simp]: 〈p ∈ set z = member p z 〉

by (induct z) simp-all

The lemma relates the member function with the built-in set membership in
Isabelle and is proven by structural induction on the list. This also allows
the Assume case in the soundness proof to be discharged automatically by the
simplifier. In fact all except the Exi-E and Uni-I cases are proven automatically
by the simplifier. The Exi-E case is proven thusly:

lemma soundness ′:
〈OK p z =⇒ list-all (semantics e f g) z =⇒ semantics e f g p〉

proof (induct p z arbitrary : f rule: OK .induct)
case (Exi-E p z q c)
then obtain x where 〈semantics (put e 0 x) f g p〉

by auto
then have 〈semantics (put e 0 x) (f (c := λw . x)) g p〉

using 〈news c (p # q # z)〉 by simp
then have 〈semantics e (f (c := λw . x)) g (sub 0 (Fun c []) p)〉
by simp

then have
〈list-all (semantics e (f (c := λw . x)) g) (sub 0 (Fun c []) p # z)〉
using Exi-E by simp

then have 〈semantics e (f (c := λw . x)) g q〉

using Exi-E by blast
then show 〈semantics e f g q〉

using 〈news c (p # q # z)〉 by simp
next

6.2 Soundness 47

Reading from the top and down, the proof proceeds as follows. According to
the induction hypothesis of the Exi-E p z q c case, an x exists which, when
put at index 0 in the environment, makes the formula p true. This is obtained
and because the constant c is fresh by the side condition of the rule, p also
holds for f(c := λw.x) by the map lemma. Next the substitute lemma allows
us to substitute c, which evaluates to x, into p instead of using the extended
environment. By assumption every formula in the list of assumptions z holds, so
the fourth have follows easily. Having shown this, we can apply the induction
hypothesis and have ‹semantics e (f(c := λw.x)) g q›. Now there is just one
complication: the f is extended compared to the goal but because c is new, the
map lemma can be used again to conclude the case.

The structure of the Uni-I case is similar with the exception that instead of
obtaining a specific x and using this, we universally quantify it and prove that p
holds for all x allowing us in the end to conclude semantics e f g (Uni p).

case (Uni-I c p z)
then have 〈∀ x . list-all (semantics e (f (c := λw . x)) g) z 〉

by simp
then have 〈∀ x . semantics e (f (c := λw . x)) g (sub 0 (Fun c []) p)〉
using Uni-I by blast

then have 〈∀ x . semantics (put e 0 x) (f (c := λw . x)) g p〉

by simp
then have 〈∀ x . semantics (put e 0 x) f g p〉

using 〈news c (p # z)〉 by simp
then show 〈semantics e f g (Uni p)〉
by simp

qed (auto simp: list-all-iff)

From this lemma the soundness theorem follows directly:

theorem soundness: 〈OK p [] =⇒ semantics e f g p〉

by (simp add : soundness ′)

With this proof formalized we know with very high certainty that the proof
system, as formalized, is sound and that it can only be used to derive valid
formulas.

One might choose to prove more of the cases in soundness’ explicitly for peda-
gogical reasons, but having a short proof without unnecessary details is also an
advantage in this regard.

48 Formalizing Soundness

6.2.1 A Consistency Corollary

Given soundness we can prove a consistency corollary about the proof system.
This states that something, but not everything can be proved, where what can be
proved is A→ A and what cannot be proved is Falsity :

corollary 〈∃ p. OK p []〉 〈∃ p. ¬ OK p []〉

proof −
have 〈OK (Imp p p) []〉 for p
by (rule Imp-I , rule Assume, simp)

then show 〈∃ p. OK p []〉

by iprover
next
have 〈¬ semantics (e :: nat ⇒ unit) f g Falsity〉 for e f g
by simp

then show 〈∃ p. ¬ OK p []〉

using soundness by iprover
qed

The for syntax here is another way to do universal quantification.

Chapter 7

Outline of Completeness
Proof

The completeness proof given by Fitting in First-Order Logic and Automated
Theorem Proving is explained below along with definitions of the necessary set
theoretical concepts. Fitting’s description is brief, so the following description
also builds on Berghofer’s formalization. Furthermore Fitting describes the
following concepts first for propositional logic and then extends them to first-
order logic, where I will present them for the latter directly. This presentation
should aid the understanding of the formalization in the next chapter. Only
closed formulas are considered in Fitting’s proof, below and in the next chapter.
Open formulas are discussed in chapter 9.

Following Fitting, the term parameter will be used as a synonym for constant and
function symbols, primarily those that are introduced for metatheoretical pur-
poses. Only non-empty domains and non-empty sets of constants are considered.
Everything in this chapter is formalized in the next.

50 Outline of Completeness Proof

7.1 The Big Picture

The main part of the proof is the model existence theorem. This describes the
consistency properties necessary for a set of formulas to have a model [Fit96,
p. 59]. Consistency here means that no contradiction can be derived from the
formulas. To reach this theorem, the notion of an abstract consistency property is
developed and the initial notion is extended to an alternate consistency property
of finite character. Given a set of formulas that live up to the requirements of this
consistency property, a maximal set of formulas can be obtained by extending
it repeatedly. This maximal set will by construction be a Hintikka set, which
basically means that every formula in the set can be derived from formulas
also in the set or that it is a term whose negation is not in the set, making it
satisfiable without contradictions. Hintikka’s lemma states that every Hintikka
set is satisfiable (in a Herbrand model) [Fit96, prop. 5.6.2] which concludes the
theorem.

Next it is shown that the set of all sets of formulas that cannot be used to derive
falsehood is consistent. This is simpler to show for the first consistency property
than for an alternate one of finite character, which is why the former is extended
to the latter abstractly.

Finally completeness follows by contraposition. Using contraposition we can
construct a single model for the negated formula instead of having to show
directly that the formula is satisfied by every interpretation.

The rest of this chapter explains these concepts in more detail.

7.2 Types of Formulas

The proof is given for arbitrary formulas of different types: α, β, γ and δ.

α and β formulas are those formed by a binary connective, possibly prefixed by
a negation, i.e. A ◦ B and ¬(A ◦ B) where ◦ is an arbitrary connective. Two
components are defined for each formula type, α1 and α2 for α formulas and
β1 and β2 for β formulas. α formulas are conjunctive which means that both
components must be true for the formula to be true [Fit96, prop. 2.6.1]:

vσ (α) ≡ vσ (α1) = T and vσ (α2) = T

7.3 Consistency Properties 51

β formulas are disjunctive which means that only one of the components need
to be true for the formula to be true [Fit96, prop. 2.6.1]:

vσ (β) ≡ vσ (β1) = T or vσ (β2) = T

The components are given in table 7.1 [Fit96, table 2.2].

Conjunctive Disjunctive
α α1 α2 β β1 β2

A ∧B A B ¬(A ∧B) ¬A ¬B
¬(A ∨B) ¬A ¬B A ∨B A B
¬(A→ B) A ¬B A→ B ¬A B

Table 7.1: Conjunctive and disjunctive formulas

The last two types of formula are those with quantifiers. γ formulas act universally
while δ formulas act existentially.

vσ (γ) ≡ vσ (γ(t)) = T for all closed terms t

vσ (δ) ≡ vσ (δ(t)) = T for any closed term t

These are summed up in table 7.2 [Fit96, table 5.1]. In this case an instance of
the formula is defined for each term t instead of its components. As an example
¬(∃x.A(x)) acts universally because it says something about all x, namely that
A is true for none of them.

Universal Existential
γ γ(t) δ δ(t)

∀x.A(x) A[x/t] ∃x.A(x) A[x/t]
¬(∃x.A(x)) ¬A[x/t] ¬(∀x.A(x)) ¬A[x/t]

Table 7.2: Universal and existential formulas

7.3 Consistency Properties

As mentioned, a set of formulas is considered consistent if no contradiction can be
derived from it. A precise definition is given below. Let C be a collection of sets
of formulas and let S be an arbitrary member of C. For C to be a consistency
property the following conditions should be met [Fit96, def. 3.6.1, def. 5.8.1]:

52 Outline of Completeness Proof

1. For any predicate p applied to a list of terms t1, t2, . . . , tn, at most one of
p(t1, t2, . . . , tn) and ¬p(t1, t2, . . . , tn) should be in S.

2. ⊥ /∈ S and ¬> /∈ S.

3. If ¬¬Z ∈ S then S ∪ {Z} ∈ C.

4. If α ∈ S then S ∪ {α1, α2} ∈ C.

5. If β ∈ S then S ∪ {β1} ∈ C or S ∪ {β2} ∈ C.

6. If γ ∈ S then S ∪ {γ(t)} ∈ C for every closed term t.

7. If δ ∈ S then S ∪ {δ(p)} ∈ C for some parameter p.

7.3.1 Alternate Consistency Property

The consistency property C can be be transformed into an alternate consistency
property C+ where condition 7 above is replaced with [Fit96, def. 5.8.3]:

7’. If γ ∈ S then S ∪ {γ(p)} ∈ C for every parameter p new to S.

Using this definition we can instantiate a δ formula with any new parameter
and the resulting set of formulas is still consistent. On the other hand if no
parameters are new, the formula cannot be instantiated at all, where the previous
definition guaranteed the existence of at least one usable parameter.

The members of C+ are all the sets of formulas S such that Sπ ∈ C for some
parameter substitution π [Fit96, p. 131, top]. A parameter substitution is a
renaming of parameters by a function. This way all the δ instances are added
because there exists parameter substitutions mapping any unused parameter
back to the fixed p.

7.3.2 Closure under Subsets

We can close a consistency property C under subsets and it will remain a
consistency property. C is closed under subsets if for every S ∈ C any subset
S′ ⊆ S is also in C, S′ ∈ C. Fitting gives no proof of this but the reasoning
is intuitive: If a contradiction could be obtained by adding S′ to C, it could
already be obtained using S, so the result of closing C must still be consistent.
If C is closed under subsets so will C+ be, as any subset of a set is also added
by the above construction.

7.4 Maximal Consistent Sets 53

7.3.3 Finite Character

An alternate consistency property C+ closed under subsets can be extended to
one, C∗, of finite character. That C∗ is of finite character is a stronger property
than it just being closed under subsets: C∗ must be closed under subsets and
for every set S where every finite subset S′ ⊆ S is a member of C∗, S must also
be a member of C∗, S ∈ C∗. Thus C∗ is obtained from C+ by adding every set
S where every finite subset of S is in C+.

Fitting gives no proof for the correctness of this extension but the intuition is
given in the following. Assume a contradiction can be derived from one of the
added sets, S. This derivation terminates so it must use a finite subset of the
formulas of S. But then there exists a contradictory finite subset of S that could
not have been a part of C+ so S could not have been added when forming C∗
and the assumption that a contradiction can be derived cannot hold.

7.4 Maximal Consistent Sets

We will now see how to extend a formula S ∈ C∗ so that it is maximal in C∗.
That S is maximal in C∗ means that it is not a subset of any other set in C∗ To
do this we first need to understand the concept of chains.

7.4.1 Chains

A chain of sets S1, S2, S3, . . . is a total ordering of those sets under some relation,
here subsets, such that S1 ⊆ S2 ⊆ S3 ⊆ The least upper bound,

⋃
i Si of a

chain of sets, Si ∈ C∗, is itself a member of C∗:

C∗ is of finite character so if every finite subset of
⋃
i Si is a member of C∗, so

is
⋃
i Si by construction. Consider an arbitrary subset {A1, . . . , Ak} ⊆

⋃
i Si.

These sets are part of a subset chain, so one of them, say Sn, will be a superset
of all of them. By definition we know that Sn ∈ C∗ and since C∗ is subset
closed it follows that {A1, . . . , Ak} ∈ C∗ which is what we needed to show. Thus⋃
i Si ∈ C∗ [Fit96, p. 61, top].

54 Outline of Completeness Proof

7.4.2 Extension

Given a set of formulas S, that is a member of C∗, we want to extend S so that
it is maximal in C∗. To do this we go from an enumeration of all the sentences
of the language, X1, X2, X3, . . ., to a sequence of members of C∗, S1, S2, S3,
Each Si leaves unused an infinite number of parameters. Since S is given to us
fresh it contains no parameters. The initial element of the sequence is

S1 = S

A subsequent element Sn+1 is now defined from Sn as follows [Fit96, p. 131]:

Sn+1 =

Sn if Sn ∪ {Xn} /∈ C∗

Sn ∪ {Xn} if Sn ∪ {Xn} ∈ C∗ and Xn 6= δ

Sn ∪ {Xn} ∪ δ(p) if Sn ∪ {Xn} ∈ C∗ and Xn = δ

In the last case infinitely many parameters are new to Sn ∪ {Xn} and only one
is used, leaving infinitely many unused in Sn+1 as well.

For each Sn, Sn ∈ C∗ and Sn ⊆ Sn+1 by construction. Their union, H =⋃
i Si, (the choice of name will become apparent shortly) has two important

properties [Fit96, p. 132, top]:

1. H ∈ C∗ because each element Sn is finite and in C∗ by construction and
C∗ is of finite character.

2. H is maximal in C∗ because if any set K ∈ C∗ was a superset of it, then for
some formula Xn, we have Xn ∈ K but Xn /∈ H. Since Xn /∈ H, it follows
from the construction of H that Sn ∪ {Xn} /∈ C∗. Then Sn ∪ {Xn} ⊆ K
because Sn ∈ H, Xn ∈ K and H is a subset of K. And since C∗ is subset
closed, Sn ∪ {Xn} ∈ C∗ but this is a contradiction.

7.5 Hintikka’s Lemma

Before reaching the model existence theorem, we need to consider Hintikka sets
and Hintikka’s lemma.

7.5 Hintikka’s Lemma 55

7.5.1 Hintikka Sets

The conditions for a set H of formulas to be a Hintikka set resemble those for a
set of set of formulas to be a consistency property. They are given below [Fit96,
def. 3.5.1, def. 5.6.1].

1. For any predicate p applied to a list of terms t1, t2, . . . , tn, at most one of
p(t1, t2, . . . , tn) and ¬p(t1, t2, . . . , tn) should be in H.

2. ⊥ /∈ H and ¬> /∈ H.

3. If ¬¬Z ∈ H then Z ∈ H.

4. If α ∈ S then α1 ∈ H and α2 ∈ H.

5. If β ∈ H then β1 ∈ H or β2 ∈ H.

6. If γ ∈ H then γ(t) ∈ H for every closed term t.

7. If δ ∈ H then δ(t) ∈ H for some closed term t.

An example Hintikka set is {(∃x.p(x)) ∧ q,∃x.p(x), q, p(c)} where p is some
predicate of arity 1, q a predicate of arity 0 and c some constant.

7.5.2 Herbrand Models

To understand Hintikka’s lemma we need the concept of a Herbrand model. In
a Herbrand model, the domain is exactly the closed terms of the language and
every closed term is interpreted as itself [Fit96, def. 5.4.1]. Terms in Herbrand
models are called Herbrand terms. Since Herbrand terms are closed by definition,
no variables can occur in them. This means that any term t, open or closed,
interpreted in a Herbrand model with variable assignment e, will equal itself where
e is used as a substitution instead: Function symbols interpret to themselves
because evaluating their list of terms will close them and this evaluation will
have the same effect on variables as substitution [Fit96, def. 5.4.2]. The same
property extends to formulas [Fit96, def. 5.4.3].

7.5.3 The Lemma

Now Hintikka’s lemma states that if H is a Hintikka set, then H is satisfiable in
a Herbrand model [Fit96, prop. 5.6.2]. Fitting outlines the following proof [Fit96,
pp. 127–128] giving only the non-negated predicate case and the γ case.

56 Outline of Completeness Proof

First the model M is constructed by letting the domain be every closed term of
the language and letting closed terms interpret to themselves as prescribed. A
predicate p(t1, . . . , tn) is interpreted as true iff p(t1, . . . , tn) ∈ H.

Consider a sentence X ∈ H; we want to show that M satisfies X. Fitting uses
structural induction to show this, where in the quantifier cases the induction
hypothesis applies to instantiations of the formula.

Suppose X = > then M satisfies it trivially. Supposing X = ⊥ contradicts
X ∈ H so the case holds vacuously.

Suppose X = p(t1, . . . , tn), then every term t1, . . . , tn must be closed since X
is a sentence with no quantifiers. Therefore the terms t1, . . . , tn interpret to
themselves by the property of the Herbrand model and p(t1, . . . , tn) interpreted
is simply p(t1, . . . , tn). We know by assumption that X ∈ H and this is the
condition for a predicate to be true, so M satisfies X in this case.

Suppose X = ¬p(t1, . . . , tn). Then by definition of Hintikka sets p(t1, . . . , tn) /∈
H, which means p(t1, . . . , tn) is interpreted as false by M so its negation is true
as needed.

Suppose X is an α formula. Then the induction hypothesis applies to its
components, α1 and α2. By definition of Hintikka sets these are both members
of H, so by the induction hypothesis M satisfies them. Thus X is satisfied by
M , by the semantics of α formulas.

Suppose X is a β formula. Then the induction hypothesis applies to its compo-
nents, β1 and β2. By definition of Hintikka sets at least one of these is a member
of H, and is satisfied by M by the induction hypothesis. Thus X is satisfied by
M , by the semantics of β formulas.

Suppose X is a γ formula. Then for every closed term t, X(t) ∈ H by definition of
Hintikka sets and because X(t) is an instantiation of X the induction hypothesis
applies. Thus M satisfies X(t) for every closed term t. Since the domain is
exactly the set of closed terms, M satisfies X by semantics of γ formulas.

Suppose finally that X is a δ formula. Then there exists some closed t for which
X(t) ∈ H by definition of Hintikka sets and X(t) is an instantiation of X so M
satisfies X(t). The existence of one such term is enough to satisfy a δ formula,
so M satisfies X.

Thus M satisfies every sentence in H and since we only assumed that M is a
Herbrand model and that H is a Hintikka set, this concludes the proof.

7.6 Model Existence Theorem 57

7.6 Model Existence Theorem

All of the above can now be combined into the model existence theorem. Given
a set of formulas S, that is a member of a consistency property C, we want to
construct a model for S. First C is extended to C∗ where S is also a member of
C∗ by construction. Now H =

⋃
i Si as constructed previously extends S and is

a Hintikka set. This follows directly from the construction of C∗ and H and the
fact that H is maximal in C∗ [Fit96, p. 132, top].

From this third property it follows that H is satisfiable in a Herbrand model
and since S is a subset of H so is it. Thus there exists a model for S which
concludes the theorem.

7.7 Completeness

The final thing we need for completeness is to show that the set of sets of formulas
from which we cannot derive a contradiction, is a consistency property. This is
shown in the next chapter by going through the conditions one at a time.

Given this and the model existence theorem, the following trick is employed to
show completeness [Ber07a]. Consider an arbitrary valid formula p that we want
to show is derivable. The proof uses the contraposition principle:

A→ B ≡ ¬B → ¬A

Thus we show that if the formula cannot be derived then it is invalid, and this is
equivalent to the statement that if it is valid then it can be derived. Assuming
p cannot be derived means that the set {¬p} is consistent, for p cannot be
derived so no contradiction is possible. Then by the model existence theorem a
model can be obtained for ¬p. But then p cannot be valid because if it was, an
interpretation would exists which satisfies both p and ¬p and this is impossible.
Thus it follows that any valid formula can be derived and the proof system is
complete.

This completeness proof has the advantage that we only need to show very little
about the particular proof system, namely its consistency. The rest of the proof
is developed abstractly.

58 Outline of Completeness Proof

Chapter 8

Formalizing Completeness

This chapter extends the formalization of the syntax, semantics and soundness
of natural deduction with the completeness proof given in the previous chapter.
To aid the representation only excerpts are given here, with the proof available
in its entirety online as mentioned previously.

8.1 Consistency Properties

We need to develop some utility functions and lemmas before we can express the
textbook proof.

The formalized proof uses the syntax of formulas directly instead of the α, β,
δ and γ types used in the textbook proof. This is arguably simpler but it also
makes for some redundancy in declarations and proofs as evidenced by the
formalized version of a consistency property below.

definition consistency :: 〈fm set set ⇒ bool 〉 where
〈consistency C = (∀S . S ∈ C −→
(∀ p ts. ¬ (Pre p ts ∈ S ∧ Neg (Pre p ts) ∈ S)) ∧
Falsity /∈ S ∧

60 Formalizing Completeness

(∀Z . Neg (Neg Z) ∈ S −→ S ∪ {Z} ∈ C) ∧
(∀A B . Con A B ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B . Neg (Dis A B) ∈ S −→ S ∪ {Neg A, Neg B} ∈ C) ∧
(∀A B . Dis A B ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B . Neg (Con A B) ∈ S −→
S ∪ {Neg A} ∈ C ∨ S ∪ {Neg B} ∈ C) ∧

(∀A B . Imp A B ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B . Neg (Imp A B) ∈ S −→ S ∪ {A, Neg B} ∈ C) ∧
(∀P t . closed-term 0 t −→ Uni P ∈ S −→ S ∪ {sub 0 t P} ∈ C) ∧
(∀P t . closed-term 0 t −→ Neg (Exi P) ∈ S −→
S ∪ {Neg (sub 0 t P)} ∈ C) ∧

(∀P . Exi P ∈ S −→ (∃ x . S ∪ {sub 0 (Fun x []) P} ∈ C)) ∧
(∀P . Neg (Uni P) ∈ S −→
(∃ x . S ∪ {Neg (sub 0 (Fun x []) P)} ∈ C)))〉

This expresses the consistency property as a function from sets of sets of formulas
to true or false. Each condition is expressed as an implication and they are all
joined by conjunctions. The definition relies on the function closed-term which
checks that a term is closed assuming a certain number of quantifiers have been
passed — closed is similar but for formulas — and the following abbreviation:

abbreviation Neg :: 〈fm ⇒ fm〉 where 〈Neg p ≡ Imp p Falsity〉

8.1.1 Alternate Consistency Property

The declaration alt-consistency checks if a given set is an alternate consistency
property and is obtained by replacing the last two lines above with the following:

(∀P x . (∀ a ∈ S . x /∈ params a) −→ Exi P ∈ S −→
S ∪ {sub 0 (Fun x []) P} ∈ C) ∧

(∀P x . (∀ a ∈ S . x /∈ params a) −→ Neg (Uni P) ∈ S −→
S ∪ {Neg (sub 0 (Fun x []) P)} ∈ C)

As in the textbook proof this replaces the requirement for the existence of a
specific parameter with a condition on all new parameters. The function params
takes a formula and returns a set of all the identifiers that has been used as
function symbols (and thus constant/parameter symbols) in that formula. This
is used directly here instead of news because S is a set and news works on lists.

The construction of an alternate consistency property below matches the textbook
description. Here {S. P S} is set-builder notation meaning the set of all elements
S that satisfy the predicate P .

8.1 Consistency Properties 61

definition mk-alt-consistency :: 〈fm set set ⇒ fm set set〉 where
〈mk-alt-consistency C = {S . ∃ f . psubst f ‘ S ∈ C}〉

The psubst function has the following type, mapping the supplied function over
every function symbol.

psubst :: 〈(id ⇒ id) ⇒ fm ⇒ fm〉

We need to prove that this construction actually satisfies the conditions. This is
done in the following theorem.

theorem alt-consistency :
assumes conc: 〈consistency C 〉

shows 〈alt-consistency (mk-alt-consistency C)〉 (is 〈alt-consistency ?C ′〉)

We assume that C is a consistency property and name this fact conc. Using this
we show that the construction is an alternate consistency property and name
the constructed set ?C’ (corresponding to C+) for easier reference in the proof.

The proof starts by unfolding the definition of an alternative consistency property
and introducing each conjunction as a new goal allowing us to prove them
separately. To show that the conditions hold for all S′ ∈ ?C ′, we fix a specific
one assuming only S ∈ ?C ′. Furthermore we obtain the specific f that puts S′
in the original C and call this mapped S′, ?S.

unfolding alt-consistency-def
proof (intro allI impI conjI)
fix S ′

assume 〈S ′ ∈ ?C ′〉
then obtain f where sc: 〈psubst f ‘ S ′ ∈ C 〉 (is 〈?S ∈ C 〉)
unfolding mk-alt-consistency-def by blast

Let us look at the proof of the first condition, that both a predicate and its
negation cannot be in S′.

fix p ts
show 〈¬ (Pre p ts ∈ S ′ ∧ Neg (Pre p ts) ∈ S ′)〉
proof

62 Formalizing Completeness

assume ∗: 〈Pre p ts ∈ S ′ ∧ Neg (Pre p ts) ∈ S ′〉
then have 〈psubst f (Pre p ts) ∈ ?S 〉

by blast
then have 〈Pre p (psubst-list f ts) ∈ ?S 〉

by simp
then have 〈Neg (Pre p (psubst-list f ts)) /∈ ?S 〉

using conc sc by (simp add : consistency-def)
then have 〈Neg (Pre p ts) /∈ S ′〉
by force

then show False
using ∗ by blast

qed

It is a proof of a negation, so we assume the un-negated proposition, *, and derive
falsehood. First we apply the parameter substitution f to the original positive
formula in S′ and the result must then be in ?S by its construction. Parameter
substitution of a predicate is done by applying the substitution to the list of
terms which allows us to push the substitution under the Pre constructor. With
that done we can conclude in the third have that the negation of the substituted
formula cannot be in ?S using the original consistency conditions on C and the
fact that ?S ∈ C. But then the negation of the original formula cannot be in S′
and this contradicts the assumption allowing us to derive False as needed.

The ⊥, negation and α, β and γ cases are similar as these conditions are all
equal between the two types of consistency property. Looking at one of the δ
cases is more interesting. The first half is shown below.

{ fix P x
assume 〈∀ a ∈ S ′. x /∈ params a〉 and 〈Exi P ∈ S ′〉
moreover have 〈psubst f (Exi P) ∈ ?S 〉

using calculation by blast
then have 〈∃ y . ?S ∪ {sub 0 (Fun y []) (psubst f P)} ∈ C 〉

using conc sc by (simp add : consistency-def)
then obtain y where 〈?S ∪ {sub 0 (Fun y []) (psubst f P)} ∈ C 〉

by blast

Here the proof is enclosed in curly braces, a so-called raw proof block. This
allows us to reuse the fixed names in proofs of the other conditions without the
assumptions applying to those as well. These are discussed further below. The
premises of the condition are assumed and we show that the conclusion follows,
namely that in ?C ′, δ ∈ S′ has been extended with all possible instantiations
δ(x) for all free x. This is done by showing that, no matter what the x is we can
map it back to y, since it is free in S′ and thus mk-alt-consistency must have
added every instantiation.

8.1 Consistency Properties 63

This first half of the proof resembles the predicate case in that we look at the
substituted formula in ?S and use the original consistency conditions to obtain
the y which must exist since ?S ∈ C. This is the y which can be used to
instantiate the original formula keeping the result in C.

moreover have 〈psubst (f (x := y)) ‘ S ′ = ?S 〉

using calculation by (simp cong add : image-cong)
then have 〈psubst (f (x := y)) ‘

S ′ ∪ {sub 0 (Fun ((f (x := y)) x) []) (psubst (f (x := y)) P)} ∈ C 〉

using calculation by auto
then have 〈∃ f . psubst f ‘

S ′ ∪ {sub 0 (Fun (f x) []) (psubst f P)} ∈ C 〉

by blast
then show 〈S ′ ∪ {sub 0 (Fun x []) P} ∈ ?C ′〉
unfolding mk-alt-consistency-def by simp }

The assumption that the fixed parameter x does not appear in S′ allows uses to
derive the first have above that uses f(x := y) instead of f . This also applies to
the extension of ?S from the original consistency property in the next have. The
third have existentially quantifies the f(x := y) making it resemble the definition
of mk-alt-consistency. Thus the final show follows directly.

That the constructed consistency property is a subset of the original follows
almost directly by using the identity function as f :

theorem mk-alt-consistency-subset : 〈C ⊆ mk-alt-consistency C 〉

unfolding mk-alt-consistency-def
proof
fix S
assume 〈S ∈ C 〉

then have 〈psubst id ‘ S ∈ C 〉

by simp
then have 〈∃ f . psubst f ‘ S ∈ C 〉

by blast
then show 〈S ∈ {S . ∃ f . psubst f ‘ S ∈ C}〉
by simp

qed

8.1.1.1 Proof Structure

A slight digression is worth it to discuss the choice of raw proof blocks which are
somewhat rare and the structure of the proofs in general. Raw proof blocks are

64 Formalizing Completeness

a feature of the declarative Isar language and thus do not appear in Berghofer’s
proof which uses apply commands exclusively. In the apply style the cases of a
proof are proved in an order determined by their underlying declaration. This is
not the case in the declarative style where we may prove cases in any order we
choose and what case we are proving is apparent from either a case command or
a combination of assume and show. Where relevant I have used this freedom to
prove cases in the order of their corresponding type: α, β, γ and finally δ. Thus
the formalization follows the proof in the previous chapter more closely.

The use of raw proof blocks is to minimize the overhead of the formalization
compared to the textbook proof. With raw proof blocks the structure for each
case becomes something like:

{ fix X Y
assume A B C
— . . .
show D by blast }

This relies on the correct introduction of implications etc. in the initial proof
command. Alternatively, and perhaps more traditionally, we can state before-
hand what case we are proving and then do the introduction, like this:

proof −
show 〈∀X Y . A −→ B −→ C −→ D〉

proof (intro allI impI)
fix X Y
assume A B C
— . . .
show D by blast

qed

But the redundancy is readily apparent, the assumptions and conclusion are
stated twice and we need to wrap everything in proof, qed. There are variations
on this latter choice but in all cases it is more verbose than the raw proof blocks.

8.1.2 Closure under Subsets

As mentioned earlier, a set of sets is subset closed by extending it with every
subset of every member set. This is done below along with checking that a given
set is subset closed:

8.1 Consistency Properties 65

definition close :: 〈fm set set ⇒ fm set set〉 where
〈close C = {S . ∃S ′ ∈ C . S ⊆ S ′}〉

definition subset-closed :: 〈 ′a set set ⇒ bool 〉 where
〈subset-closed C = (∀S ′ ∈ C . ∀S . S ⊆ S ′ −→ S ∈ C)〉

The proof that a consistency property remains a consistency property when
subset closed relies crucially on the following lemma. This states that if a set
S extended with an element x is in the original set, C, any subset of S, S′,
extended with the same element will be in close C.

lemma subset-in-close:
assumes 〈S ′ ⊆ S 〉 and 〈S ∪ x ∈ C 〉

shows 〈S ′ ∪ x ∈ close C 〉

Given this we can prove a larger theorem:

theorem close-consistency :
assumes conc: 〈consistency C 〉

shows 〈consistency (close C)〉

Again each condition is proved separately and since all the cases are similar I will
just show the Con case here. The proof is done by looking at an arbitrary set
S′ ∈ close C in relation to a specific S ∈ C where S′ ⊆ S which can be thought
of as the set S′ originated from.

{ fix A B
assume 〈Con A B ∈ S ′〉
then have 〈Con A B ∈ S 〉

using 〈S ′ ⊆ S 〉 by blast
then have 〈S ∪ {A, B} ∈ C 〉

using 〈S ∈ C 〉 conc unfolding consistency-def by simp
then show 〈S ′ ∪ {A, B} ∈ close C 〉

using 〈S ′ ⊆ S 〉 subset-in-close by blast }

The conjunction is in the smaller set, so it is also in the larger one. Because C is
a consistency property we can extend S with the conjunction’s components, A
and B, and the resulting set is also in C. Finally by definition of close, it follows
that S′ extended with the components must then be in close C.

66 Formalizing Completeness

Lastly we can prove that turning a subset closed consistency property into an
alternate one preserves its property of being closed under subsets. In fact we
prove a more general version of the theorem where we do not even assume that
C is a consistency property.

theorem mk-alt-consistency-closed :
assumes 〈subset-closed C 〉

shows 〈subset-closed (mk-alt-consistency C)〉

unfolding subset-closed-def
proof (intro ballI allI impI)
fix S S ′

assume 〈S ∈ mk-alt-consistency C 〉 and 〈S ′ ⊆ S 〉

then obtain f where ∗: 〈psubst f ‘ S ∈ C 〉

unfolding mk-alt-consistency-def by blast
moreover have 〈psubst f ‘ S ′ ⊆ psubst f ‘ S 〉

using 〈S ′ ⊆ S 〉 by blast
ultimately have 〈psubst f ‘ S ′ ∈ C 〉

using 〈subset-closed C 〉 unfolding subset-closed-def by blast
then show 〈S ′ ∈ mk-alt-consistency C 〉

unfolding mk-alt-consistency-def by blast
qed

In the proof we consider a set S ∈ mk-alt-consistency C and an arbitrary subset
of this, S′ ⊆ S, showing that this subset is also in mk-alt-consistency C. This is
done by obtaining the parameter substitution f which made S part of mk-alt-
consistency C in the first place and showing that this would also make S′ part
of the alternate consistency property, precisely because it is subset closed.

8.1.3 Finite Character

We recall the definition of a set of finite character and its construction:

definition finite-char :: 〈 ′a set set ⇒ bool 〉 where
〈finite-char C =
(∀S . S ∈ C = (∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C))〉

definition mk-finite-char :: 〈 ′a set set ⇒ ′a set set〉 where
〈mk-finite-char C = {S . ∀S ′. S ′ ⊆ S −→ finite S ′ −→ S ′ ∈ C}〉

theorem finite-char : 〈finite-char (mk-finite-char C)〉

unfolding finite-char-def mk-finite-char-def by blast

8.1 Consistency Properties 67

The last theorem states that the function matches the specification.

Given these we can now prove that an alternate consistency property extended
to one of finite character is still an alternate consistency property. First the
theorem is introduced and a couple of useful facts are derived as we have seen
previously.

theorem finite-alt-consistency :
assumes altconc: 〈alt-consistency C 〉

and 〈subset-closed C 〉

shows 〈alt-consistency (mk-finite-char C)〉

unfolding alt-consistency-def
proof (intro allI impI conjI)
fix S
assume 〈S ∈ mk-finite-char C 〉

then have finc: 〈∀S ′ ⊆ S . finite S ′ −→ S ′ ∈ C 〉

unfolding mk-finite-char-def by blast

have 〈∀S ′ ∈ C . ∀S ⊆ S ′. S ∈ C 〉

using 〈subset-closed C 〉 unfolding subset-closed-def by blast
then have sc: 〈∀S ′ x . S ′ ∪ x ∈ C −→ (∀S ⊆ S ′ ∪ x . S ∈ C)〉

by blast

For brevity only the Exi case is included here. This is a δ case and the reason that
we use an alternate consistency property instead of the original. We are looking
at an S ∈ mk-finite-char C where C is a subset closed alternate consistency
property and need to show that S∪{δ(x)} ∈ mk-finite-char C. To do this we look
at a finite subset S′ of S. Since we are transforming C to be of finite character, it
is enough to show that S′ ∈ C; the original claim follows by the finite character
construction. We start by considering this S′ without δ(x) but extended with δ:

{ fix P x
assume ∗: 〈Exi P ∈ S 〉 and 〈∀ a ∈ S . x /∈ params a〉

show 〈S ∪ {sub 0 (Fun x []) P} ∈ mk-finite-char C 〉

unfolding mk-finite-char-def
proof (intro allI impI CollectI)
fix S ′

let ?S ′ = 〈(S ′ − {sub 0 (Fun x []) P}) ∪ {Exi P}〉

assume 〈S ′ ⊆ S ∪ {sub 0 (Fun x []) P}〉 and 〈finite S ′〉
then have 〈?S ′ ⊆ S 〉

using ∗ by blast
moreover have 〈finite ?S ′〉
using 〈finite S ′〉 by blast

68 Formalizing Completeness

This ?S′ is still finite so ?S′ ∈ C. Moreover, because of the formulation of
an alternate consistency property we can assume that the x we use for the
instantiation is free in S. Therefore it is also free in the finite subset S′, so
?S′ ∪ {δ(x)} ∈ C because it is consistent:

ultimately have 〈?S ′ ∈ C 〉

using finc by blast
moreover have 〈∀ a ∈ ?S ′. x /∈ params a〉

using 〈∀ a ∈ S . x /∈ params a〉 〈?S ′ ⊆ S 〉 by blast
ultimately have 〈?S ′ ∪ {sub 0 (Fun x []) P} ∈ C 〉

using altconc 〈∀ a ∈ S . x /∈ params a〉

unfolding alt-consistency-def by blast
then show 〈S ′ ∈ C 〉

using sc by blast
qed }

And this was all we needed to show since ?S′ ∪ {δ(x)} = S′. Had we used an
ordinary consistency property, we could obtain a suitable x for extending S′ but
this x might not be useful for extending S since S is bigger. Here we can use
the x given for S to extend S′ with, obviating the problem.

8.2 Enumerating Data Types

Fitting’s proof relies on the ability to enumerate the sentences of the language.
Berghofer develops his own machinery using diagonalization to do this [Ber07a].
In the meantime however, a library called Countable has been developed for
Isabelle which automates this process [KHB16]. By importing this library we
can obtain enumeration of terms and formulas using just the following:

instantiation tm :: countable begin
instance by countable-datatype
end

instantiation fm :: countable begin
instance by countable-datatype
end

This provides the two functions, to-nat and from-nat and some lemmas about
them. Thus the sentence Xn in the textbook proof becomes from-nat n in the
formalization.

8.3 Maximal Consistent Sets 69

8.3 Maximal Consistent Sets

I give the highlights of this development.

8.3.1 Chains

First we need a definition of chains under the subset relation, where we use a
function from the natural numbers to provide each set in the chain:

definition is-chain :: 〈(nat ⇒ ′a set) ⇒ bool 〉 where
〈is-chain f = (∀n. f n ⊆ f (Suc n))〉

Several lemmas are developed before proving that unions of subset chains from
alternate consistency properties of finite character are themselves part of that
property. These are omitted for brevity, but the conclusion can be seen below.

theorem chain-union-closed :
assumes 〈finite-char C 〉 and 〈is-chain f 〉 and 〈∀n. f n ∈ C 〉

shows 〈(
⋃
n. f n) ∈ C 〉

8.3.2 Extension

First we define a recursive function extend for obtaining a specific element, Sn,
in the sequence:

primrec extend :: 〈fm set ⇒ fm set set ⇒ (nat ⇒ fm) ⇒ nat ⇒ fm set〉
where

〈extend S C f 0 = S 〉 |
〈extend S C f (Suc n) = (if extend S C f n ∪ {f n} ∈ C
then (if (∃ p. f n = Exi p)

then extend S C f n ∪ {f n} ∪ {sub 0
(Fun (SOME k . k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p)) [])

(dest-Exi (f n))}
else if (∃ p. f n = Neg (Uni p))
then extend S C f n ∪ {f n} ∪ {Neg (sub 0
(Fun (SOME k . k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p)) [])

(dest-Uni (dest-Neg (f n))))}
else extend S C f n ∪ {f n})

else extend S C f n)〉

70 Formalizing Completeness

The f above will be specialized to from-nat in the end. The dest functions are
defined by Berghofer as inexhaustive primitive recursions that return undefined
on any other input than the intended. I use the following type of abbreviation
instead which covers all cases and expresses the pattern matching explicitly with
case instead of relying on primrec that suggests recursion where none is needed:

abbreviation dest-Uni :: 〈fm ⇒ fm〉 where
〈dest-Uni p ≡ (case p of (Uni p ′) ⇒ p ′ | p ′ ⇒ p ′)〉

Elements obtained by extend form a chain by construction:

theorem is-chain-extend : 〈is-chain (extend S C f)〉
by (simp add : is-chain-def) blast

Given this we can easily obtain the union of the entire chain:

definition Extend :: 〈fm set ⇒ fm set set ⇒ (nat ⇒ fm) ⇒ fm set〉
where

〈Extend S C f = (
⋃
n. extend S C f n)〉

We need to prove that each element in the sequence leaves infinitely many
parameters unused so the sequence can be extended infinitely without causing
problems in the δ cases. This is done in the following lemma where we show
that for any chosen n there exists a parameter unused by Sn.

lemma infinite-params-available:
assumes 〈infinite (− (

⋃
p ∈ S . params p))〉

shows 〈∃ x . x /∈ (
⋃
p ∈ extend S C f n ∪ {f n}. params p)〉

(is 〈- (
⋃
- ∈ ?S ′. -)〉)

proof −
have 〈infinite (− (

⋃
p ∈ ?S ′. params p))〉

using assms by (simp add : set-inter-compl-diff)
then obtain x where 〈x ∈ − (

⋃
p ∈ ?S ′. params p)〉

using infinite-imp-nonempty by blast
then show 〈∃ x . x /∈ (

⋃
p ∈ ?S ′. params p)〉

by blast
qed

This essentially follows from the fact that there are infinitely many unused
parameters but each Sn can only use finitely many of them, always leaving some
unused.

8.3 Maximal Consistent Sets 71

Looking at the cases in extend we need to prove that no matter which is chosen,
the resulting element is in C∗. The interesting case is for δ formulas, where the
Exi case is given below, starting with the declaration of the lemma.

lemma extend-in-C-Exi :
assumes 〈alt-consistency C 〉

and 〈infinite (− (
⋃
p ∈ S . params p))〉

and 〈extend S C f n ∪ {f n} ∈ C 〉 (is 〈?S ′ ∈ C 〉)
and 〈∃ p. f n = Exi p〉

shows 〈extend S C f (Suc n) ∈ C 〉

The assumptions are simply the facts we know by the definition of extend when
we are in the Exi case. The direct proof follows.

proof −
obtain p where ∗: 〈f n = Exi p〉

using 〈∃ p. f n = Exi p〉 by blast

let ?x = 〈(SOME k . k /∈ (
⋃
p ∈ ?S ′. params p))〉

from 〈infinite (− (
⋃
p ∈ S . params p))〉

have 〈∃ x . x /∈ (
⋃
p ∈ ?S ′. params p)〉

using infinite-params-available by blast
then have 〈?x /∈ (

⋃
p ∈ ?S ′. params p)〉

using someI-ex by metis
then have 〈(?S ′ ∪ {sub 0 (Fun ?x []) p}) ∈ C 〉

using ∗ 〈?S ′ ∈ C 〉 〈alt-consistency C 〉

unfolding alt-consistency-def by simp
then show ?thesis
using assms ∗ by simp

qed

We start by obtaining the p from Xn = f n = Exi p and define a parameter
?x which is free in p. The definition of ?x uses Hilbert’s choice operator which
selects some element, if one exists, that satisfies the given property. Next we
show ?x actually exists using infinite-params-available and thus that it really is
free in p. From there the proof follows directly from the consistency of C.

Given proofs of all the cases in extend the proof of the following theorem is
trivial by induction on n and omitted:

theorem extend-in-C : 〈alt-consistency C =⇒ S ∈ C =⇒
infinite (− (

⋃
p ∈ S . params p)) =⇒ extend S C f n ∈ C 〉

72 Formalizing Completeness

This extends to the main theorem, that the union of the chain of all Sn is in C∗.

theorem Extend-in-C : 〈alt-consistency C =⇒ finite-char C =⇒
S ∈ C =⇒ infinite (− (

⋃
p ∈ S . params p)) =⇒ Extend S C f ∈ C 〉

using chain-union-closed is-chain-extend extend-in-C
unfolding Extend-def by blast

8.3.3 Maximality

Finally we just need to show that the obtained set is maximal. For this we first
need to define maximality:

definition maximal :: 〈 ′a set ⇒ ′a set set ⇒ bool 〉 where
〈maximal S C = (∀S ′ ∈ C . S ⊆ S ′ −→ S = S ′)〉

I will omit the formalized proof of maximality. It follows the one given in
section 7.4.2. The conclusion is given below.

theorem Extend-maximal :
assumes 〈∀ y :: fm. ∃n. y = f n〉 and 〈finite-char C 〉

shows 〈maximal (Extend S C f) C 〉

8.4 Hintikka Sets

Hintikka sets, like consistency properties, are formalized by a boolean function
on sets:

definition hintikka :: 〈fm set ⇒ bool 〉 where
〈hintikka H =
((∀ p ts. ¬ (Pre p ts ∈ H ∧ Neg (Pre p ts) ∈ H)) ∧
Falsity /∈ H ∧
(∀Z . Neg (Neg Z) ∈ H −→ Z ∈ H) ∧
(∀A B . Con A B ∈ H −→ A ∈ H ∧ B ∈ H) ∧
(∀A B . Neg (Dis A B) ∈ H −→ Neg A ∈ H ∧ Neg B ∈ H) ∧
(∀A B . Dis A B ∈ H −→ A ∈ H ∨ B ∈ H) ∧
(∀A B . Neg (Con A B) ∈ H −→ Neg A ∈ H ∨ Neg B ∈ H) ∧
(∀A B . Imp A B ∈ H −→ Neg A ∈ H ∨ B ∈ H) ∧

8.4 Hintikka Sets 73

(∀A B . Neg (Imp A B) ∈ H −→ A ∈ H ∧ Neg B ∈ H) ∧
(∀P t . closed-term 0 t −→ Uni P ∈ H −→ sub 0 t P ∈ H) ∧
(∀P t . closed-term 0 t −→ Neg (Exi P) ∈ H −→
Neg (sub 0 t P) ∈ H) ∧

(∀P . Exi P ∈ H −→ (∃ t . closed-term 0 t ∧ sub 0 t P ∈ H)) ∧
(∀P . Neg (Uni P) ∈ H −→
(∃ t . closed-term 0 t ∧ Neg (sub 0 t P) ∈ H)))〉

8.4.1 Herbrand Terms

A separate term data type without variables is used for Herbrand terms to ensure
by construction that they are closed:

datatype htm = HFun id 〈htm list〉

We also need functions for turning Herbrand terms into regular terms.

tm-of-htm :: 〈htm ⇒ tm〉 and
tms-of-htms :: 〈htm list ⇒ tm list〉

When a term is closed, its semantics in a Herbrand model is equal to itself.

lemma herbrand-semantics [simp]:
〈closed-term 0 t =⇒ tm-of-htm (semantics-term e HFun t) = t〉
〈closed-list 0 l =⇒ tms-of-htms (semantics-list e HFun l) = l 〉
by (induct t and l rule: closed-term.induct closed-list .induct) simp-all

The way we formalize a Herbrand model is by using HFun as F , so every
closed term is turned into the equivalent Herbrand term. For G we will use a
lambda function which converts the Herbrand terms in the predicate back to
the equivalent regular terms before looking the predicate up in H.

Any term originating from a Herbrand term becomes that Herbrand term again
when evaluated in a Herbrand model.

lemma herbrand-semantics ′ [simp]:
〈semantics-term e HFun (tm-of-htm ht) = ht〉
〈semantics-list e HFun (tms-of-htms hts) = hts〉

by (induct ht and hts rule: tm-of-htm.induct tms-of-htms.induct) simp-all

74 Formalizing Completeness

8.4.2 The Lemma

We will prove that any closed formula from a Hintikka set is true in a Herbrand
model. This however, does not provide us with a strong enough induction
hypothesis e.g. for implication so we will extend the claim to also say that any
negated closed formula in a Hintikka set is true in a Herbrand model.

theorem hintikka-model :
assumes hin: 〈hintikka H 〉

shows 〈(p ∈ H −→ closed 0 p −→
semantics e HFun (λi l . Pre i (tms-of-htms l) ∈ H) p) ∧
(Neg p ∈ H −→ closed 0 p −→
semantics e HFun (λi l . Pre i (tms-of-htms l) ∈ H) (Neg p))〉

The proof given in section 7.5.3 is by structural induction on the formula. In
the case of quantifiers, e.g. ∀x.A, we use the induction hypotheses on instances
of the quantified formula, e.g. A[c/0]. Isabelle’s standard induction on data
types only allows the induction hypothesis to be applied to direct constructor
arguments, i.e A. Therefore we will instead use well-founded induction over the
size of the data type, defined as the number of logical connectives and quantifiers
used in it. Since A[c/0] has the same size as A this solves our problem:

proof (rule wf-induct [where a=p and r=〈measure size-formulas〉])
show 〈wf (measure size-formulas)〉
by blast

next
let ?semantics = 〈semantics e HFun (λi l . Pre i (tms-of-htms l) ∈ H)〉

fix x
assume wf : 〈∀ y . (y , x) ∈ measure size-formulas −→

(y ∈ H −→ closed 0 y −→ ?semantics y) ∧
(Neg y ∈ H −→ closed 0 y −→ ?semantics (Neg y))〉

show 〈(x ∈ H −→ closed 0 x −→ ?semantics x) ∧
(Neg x ∈ H −→ closed 0 x −→ ?semantics (Neg x))〉

proof (cases x)

It makes the start of the proof a bit more verbose than when using induct directly,
but it is a small price to pay for the ability to choose our own induction measure.

The proof was given in the last chapter so I will just show a single case here. For
variety this will be the positive Imp case. x below is equal to Imp A B, another
consequence of using our own induction measure.

8.4 Hintikka Sets 75

case (Imp A B)
then show ?thesis proof (intro conjI impI)
assume 〈x ∈ H 〉 and 〈closed 0 x 〉

then have 〈Imp A B ∈ H 〉 and 〈closed 0 (Imp A B)〉

using Imp by simp-all
then have 〈Neg A ∈ H ∨ B ∈ H 〉

using hin unfolding hintikka-def by blast
then show 〈?semantics x 〉

using Imp wf 〈closed 0 (Imp A B)〉 by force

The implication is in H by assumption, so either component Neg A or B is also
in H by the properties of a Hintikka set. Thus if Neg A ∈ H, it evaluates to true
by the induction hypothesis, making A false and Imp A B true. If on the other
hand it is B ∈ H which holds, then B is true in the Herbrand model and so is
Imp A B by the semantics no matter the truth value of A.

8.4.3 Maximal Extension is Hintikka

Before we can derive the model existence theorem we need to show that the set
produced by Extend is in fact a Hintikka set.

theorem extend-hintikka:
assumes 〈S ∈ C 〉

and fin-ch: 〈finite-char C 〉

and infin-p: 〈infinite (− (
⋃
p ∈ S . params p))〉

and surj : 〈∀ y . ∃n. y = f n〉

and altc: 〈alt-consistency C 〉

shows 〈hintikka (Extend S C f)〉 (is 〈hintikka ?H 〉)

The proof is set up as we have seen previously, unfolding the definition of Hintikka
sets and introducing each conjunct as a goal to prove. Before proving a case
some facts are derived which are useful for several of the cases.

unfolding hintikka-def
proof (intro allI impI conjI)
have 〈maximal ?H C 〉 and 〈?H ∈ C 〉

using Extend-maximal Extend-in-C assms by blast+

Everything except the δ cases are similar and trivial. Below is an example of a
γ case, namely Neg (Exi P).

76 Formalizing Completeness

{ fix P t
assume 〈Neg (Exi P) ∈ ?H 〉 and 〈closed-term 0 t〉
then have 〈?H ∪ {Neg (sub 0 t P)} ∈ C 〉

using 〈?H ∈ C 〉 altc unfolding alt-consistency-def by blast
then show 〈Neg (sub 0 t P) ∈ ?H 〉

using 〈maximal ?H C 〉 unfolding maximal-def by fast }

We can extend ?H with the instantiation because it is a member of the consistency
property. Since ?H is maximal it must already include the instantiation, which
is the condition for it being Hintikka in this case and what we want to show.

The Exi case, one of the two δ cases, relies on the omitted Exi-in-Extend lemma.
It states that the extend function adds an instantiation of the δ formula in that
case. Given this we can prove that Extend also produces a Hintikka set in the
Exi case. First by obtaining the n which for which Xn is an Exi formula and
setting up the (closed) term matching the one from the definition of extend :

{ fix P
assume 〈Exi P ∈ ?H 〉

obtain n where ∗: 〈Exi P = f n〉

using surj by blast

let ?t = 〈Fun (SOME k .
k /∈ (

⋃
p ∈ extend S C f n ∪ {f n}. params p)) []〉

have 〈closed-term 0 ?t〉
by simp

Then by noting that the extension of the chain by Xn is in C so using the lemma
mentioned above, the instantiation must be in ?H :

moreover have 〈extend S C f n ∪ {f n} ⊆ ?H 〉

using 〈Exi P ∈ ?H 〉 ∗ Extend-def by (simp add : UN-upper)
then have 〈extend S C f n ∪ {f n} ∈ C 〉

using 〈?H ∈ C 〉 fin-ch finite-char-closed subset-closed-def by metis
then have 〈sub 0 ?t P ∈ ?H 〉

using ∗ Exi-in-extend Extend-def by fast
ultimately show 〈∃ t . closed-term 0 t ∧ sub 0 t P ∈ ?H 〉

by blast }

8.5 Model Existence Theorem 77

8.5 Model Existence Theorem

To obtain the model existence theorem we first need a lemma that connects all
of the above pieces together, going from a set of formulas S in a consistency
property C to a superset of S that is Hintikka. The following lemma does this:

lemma hintikka-Extend-S :
assumes 〈consistency C 〉 and 〈S ∈ C 〉

and 〈infinite (− (
⋃
p ∈ S . params p))〉

defines 〈C ′ ≡ mk-finite-char (mk-alt-consistency (close C))〉

shows 〈hintikka (Extend S C ′ from-nat)〉

The proof is trivial but lengthy and omitted for brevity. Now the model existence
theorem follows directly.

theorem model-existence:
assumes 〈infinite (− (

⋃
p ∈ S . params p))〉

and 〈p ∈ S 〉 〈closed 0 p〉

and 〈S ∈ C 〉 〈consistency C 〉

defines 〈C ′ ≡ mk-finite-char (mk-alt-consistency (close C))〉

defines 〈H ≡ Extend S C ′ from-nat〉
shows 〈semantics e HFun (λa ts. Pre a (tms-of-htms ts) ∈ H) p〉

using assms hintikka-model hintikka-Extend-S Extend-subset by blast

This proof of the model existence theorem in Isabelle differs from Berghofer’s [Ber07a].
Berghofer proves the hintikka-Extend-S lemma directly in the proof of the model
existence theorem where I have chosen to split it out. I have chosen to do this be-
cause the fact that the maximal extension of S is Hintikka is an important result
in itself. Furthermore it makes the proof of the model existence theorem trivial
as apparent above. The same decomposition was applied to the extend-in-C
theorem for the same reasons.

Another difference between Berghofer’s formalization and mine is in the for-
mulation of the above theorem. Berghofer writes the definitions of C ′ and H
directly inside the goal where I have given them names with the defines construct.
This naming is intended to remind the reader what expression constitutes the
(alternate) consistency property, the Hintikka set etc. and is something I have
tried to introduce all the way through the formalization. It allows reasoning
at a higher level when reading the proof, because often the important thing in
a proof step is just that e.g. C is a consistency property and now how it was
formed.

78 Formalizing Completeness

8.6 Inference Rule Consistency

To apply the model existence theorem we need to prove that the set of sets from
which we cannot derive falsehood is a consistency property.

theorem OK-consistency :
〈consistency {set G |G. ¬ (OK Falsity G)}〉

The proof proceeds by unfolding the definition of a consistency property and
introducing each condition as a new goal. Because the inference rules use a list
G but the consistency property uses sets, we need to consider the set S instead
of G directly.

The difficulty of these cases varies significantly. The predicate case below is one
of the simpler ones:

{ fix i l
assume 〈Pre i l ∈ S ∧ Neg (Pre i l) ∈ S 〉

then have 〈OK (Pre i l) G〉 and 〈OK (Neg (Pre i l)) G〉

using Assume ∗ by auto
then have 〈OK Falsity G〉

using Imp-E by blast
then show False
using 〈¬ (OK Falsity G)〉 by blast }

Instead of proving that the positive and negative predicates are not both in S,
we assume that they are and derive falsehood. This allows us to derive both of
them using the Assume rule and thus show Falsity by remembering that the
formula Neg (Pre i l) is short for Imp (Pre i l) Falsity and we have just derived
Pre i l.

A slightly more interesting but still manageable case is for conjunctions. Given
a proof of a conjunction we can obtain proofs of both components:

{ fix A B
assume 〈Con A B ∈ S 〉

then have 〈OK (Con A B) G〉

using Assume ∗ by simp
then have 〈OK A G〉 and 〈OK B G〉

using Con-E1 Con-E2 by blast+

8.7 Completeness using Herbrand Terms 79

Now a contradiction is caused when assuming that we can derive Falsity by
assuming these components, so adding them to the list of assumptions must still
be consistent, which concludes the proof:

{ assume 〈OK Falsity (A # B # G)〉

then have 〈OK (Neg A) (B # G)〉

using Imp-I by blast
then have 〈OK (Neg A) G〉

using cut 〈OK B G〉 by blast
then have 〈OK Falsity G〉

using Imp-E 〈OK A G〉 by blast
then have False
using 〈¬ (OK Falsity G)〉 by blast }

then have 〈¬ (OK Falsity (A # B # G))〉

by blast
moreover have 〈S ∪ {A, B} = set (A # B # G)〉

using ∗ by simp
ultimately show 〈S ∪ {A, B} ∈ ?C 〉

by blast }

This proof uses the following cut rule:

lemma cut : 〈OK p z =⇒ OK q (p # z) =⇒ OK q z 〉

apply (rule Imp-E) apply (rule Imp-I) .

This cut rule allows us to get rid of an assumption in a proof if we can derive
the assumption on its own and is an entire topic on its own. Worth mentioning
is that the rule can be derived internally in natural deduction and thus need not
be added explicitly.

8.7 Completeness using Herbrand Terms

We can now prove completeness of the proof system in the domain of Herbrand
terms and we will see later why this is sufficient. We want to prove the following:

theorem natded-complete:
assumes 〈closed 0 p〉 and 〈list-all (closed 0) z 〉

and mod : 〈∀ (e :: nat ⇒ htm) f g .
list-all (semantics e f g) z −→ semantics e f g p〉

shows 〈OK p z 〉

80 Formalizing Completeness

We assume that p follows from the assumptions z in all interpretations and call
this fact mod. The proof is then by contradiction instead of contraposition as in
section 7.7, but this is just a technical difference. A few abbreviations are set up
for pedagogical reasons and easier reference in the proof:

proof (rule Boole, rule ccontr)
fix e
assume 〈¬ (OK Falsity (Neg p # z))〉

let ?S = 〈set (Neg p # z)〉
let ?C = 〈{set G | G. ¬ (OK Falsity G)}〉
let ?C ′ = 〈mk-finite-char (mk-alt-consistency (close ?C))〉

let ?H = 〈Extend ?S ?C ′ from-nat〉
let ?f = HFun
let ?g = 〈λi l . Pre i (tms-of-htms l) ∈ ?H 〉

We start by showing that Neg p as well as every element in z is true in the
Herbrand model using the model existence theorem.

{ fix x
assume 〈x ∈ ?S 〉

moreover have 〈closed 0 x 〉

using 〈closed 0 p〉 〈list-all (closed 0) z 〉 〈x ∈ ?S 〉

by (auto simp: list-all-iff)
moreover have 〈?S ∈ ?C 〉

using 〈¬ (OK Falsity (Neg p # z))〉 by blast
moreover have 〈consistency ?C 〉

using OK-consistency by blast
moreover have 〈infinite (− (

⋃
p ∈ ?S . params p))〉

by (simp add : Compl-eq-Diff-UNIV infinite-UNIV-listI)
ultimately have 〈semantics e ?f ?g x 〉

using model-existence by simp }
then have 〈semantics e ?f ?g (Neg p)〉
and 〈list-all (semantics e ?f ?g) z 〉

unfolding list-all-def by fastforce+

Knowing that every element in z is true allows us to get a model for p with mod.
But this contradics with the model obtained for Neg p, proving the theorem:

then have 〈semantics e ?f ?g p〉

using mod by blast
then show False
using 〈semantics e ?f ?g (Neg p)〉 by simp

qed

8.8 Completeness in Countably Infinite Domains 81

8.8 Completeness in Countably Infinite Domains

That the proof system is complete in the domain of Herbrand terms is a strong
result: Any valid formula must be true in all interpretations with the domain
of Herbrand terms and can thus be derived in the system. Here we will, for
pedagogical reasons, derive a version of the completeness result that applies to
any countably infinite domain such as the natural numbers instead of Herbrand
terms specifically. This work goes beyond Berghofer’s formalization and is based
on work by Anders Schlichtkrull on completeness for unordered resolution [Sch17].
Resolution is a vastly different proof system from natural deduction but the
same overall strategy can be applied here. This strategy is to prove that there is
a bijection between the Herbrand terms and any countably infinite domain and
that the semantics respect this bijection. As the former is independent of the
proof system, I will focus on the latter here.

8.8.1 Bijective Semantics

The proof relies on three functions for converting environments and interpreta-
tions to operate on different types:

definition e-conv :: 〈(′a ⇒ ′b) ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′b)〉 where
〈e-conv b-of-a e ≡ (λn. b-of-a (e n))〉

definition f-conv ::
〈(′a ⇒ ′b) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′b list ⇒ ′b)〉 where
〈f-conv b-of-a f ≡ (λa ts. b-of-a (f a (map (inv b-of-a) ts)))〉

definition g-conv ::
〈(′a ⇒ ′b) ⇒ (id ⇒ ′a list ⇒ bool) ⇒ (id ⇒ ′b list ⇒ bool)〉 where
〈g-conv b-of-a g ≡ (λa ts. g a (map (inv b-of-a) ts))〉

Before tackling the semantics we need a lemma relating the put and e-conv func-
tions. This states that putting a converted element into a converted environment
is the same as converting the result of putting an the original element into the
original environment:

lemma put-e-conv :
〈(put (e-conv b-of-a e) m (b-of-a x)) = e-conv b-of-a (put e m x)〉
unfolding e-conv-def by auto

82 Formalizing Completeness

Next we need to show that when the conversion is bijective, the semantics
of terms and formulas is bijective with respect to the conversion. Bijection
essentially means that each element of the first type maps to exactly one element
of the second type and vice versa. This is shown for terms first:

lemma semantics-bij ′:
assumes 〈bij (b-of-a :: ′a ⇒ ′b)〉
shows

〈semantics-term (e-conv b-of-a e) (f-conv b-of-a f) p =
b-of-a (semantics-term e f p)〉

〈semantics-list (e-conv b-of-a e) (f-conv b-of-a f) l =
map b-of-a (semantics-list e f l)〉

unfolding e-conv-def f-conv-def using assms
by (induct p and l rule: semantics-term.induct semantics-list .induct)

(simp-all add : bij-is-inj)

The proof is by induction on the recursive calls to semantics-term and semantics-
list. All the cases are proven automatically with simp-all after unfolding the
definitions and reminding Isabelle that bijective functions are also injective.

Finally we can show that the semantics in the original environment and inter-
pretation is exactly the same as the semantics of the same environment and
interpretation converted by a bijective function. This proof is by induction on
the type of formula and all cases except predicates and quantifiers are solved
automatically. The cases for the quantifiers are symmetrical so I will only show
the existential one here.

lemma semantics-bij :
assumes 〈bij (b-of-a :: ′a ⇒ ′b)〉
shows 〈semantics e f g p =
semantics (e-conv b-of-a e) (f-conv b-of-a f) (g-conv b-of-a g) p〉

proof (induct p arbitrary : e f g)

The Pre case is shown using the semantics-term-bij lemma:

case (Pre a l)
then show ?case
unfolding g-conv-def using assms
by (simp add : semantics-bij ′ bij-is-inj)

In the Exi case we first use the bijectivity of b-of-a to show that the existence of
x′ which satisfies the formula is the same as the existence of an x which converts
to that x′ and thus satisfies the formula:

8.8 Completeness in Countably Infinite Domains 83

case (Exi p)

let ?e = 〈e-conv b-of-a e〉

and ?f = 〈f-conv b-of-a f 〉

and ?g = 〈g-conv b-of-a g〉

have 〈(∃ x ′. semantics (put ?e 0 x ′) ?f ?g p) =
(∃ x . semantics (put ?e 0 (b-of-a x)) ?f ?g p)〉

using assms by (metis bij-pointE)

Then we do a bit of rewriting using the put-e-conv lemma to make the induction
hypothesis apply. The environment and interpretation is different but that is
why we are doing the induction with these as arbitrary. This concludes the proof:

also have 〈. . . = (∃ x . semantics (e-conv b-of-a (put e 0 x)) ?f ?g p)〉
using put-e-conv by metis

finally show ?case
using Exi by simp

8.8.2 Completeness

We introduce an abbreviation for sentences, that is, closed formulas:

abbreviation 〈sentence ≡ closed 0 〉

Then we can prove completeness of sentences under arbitrary assumptions z and
in any countably infinite domain:

lemma completeness ′:
assumes 〈infinite (UNIV :: (′a :: countable) set)〉
and 〈sentence p〉

and 〈list-all sentence z 〉

and 〈∀ (e :: nat ⇒ ′a) f g .
list-all (semantics e f g) z −→ semantics e f g p〉

shows 〈OK p z 〉

We are assuming that the formula is true in all interpretations with countably
infinite domain ’a and will use this to show that then this is also the case in the
domain of Herbrand terms. Given this we can apply the original completeness

84 Formalizing Completeness

result to show that the formula can be derived. The proof is direct and starts
by obtaining conversion functions to and from Herbrand terms and setting up
environments and interpretations using these:

proof −
have 〈∀ (e :: nat ⇒ htm) f g .
list-all (semantics e f g) z −→ semantics e f g p〉

proof (intro allI)
fix e :: 〈nat ⇒ htm〉

and f :: 〈id ⇒ htm list ⇒ htm〉

and g :: 〈id ⇒ htm list ⇒ bool 〉

obtain a-of-htm :: 〈htm ⇒ ′a〉 where p-a-of-hterm: 〈bij a-of-htm〉

using assms countably-inf-bij infinite-htms by blast

let ?e = 〈e-conv a-of-htm e〉

let ?f = 〈f-conv a-of-htm f 〉

let ?g = 〈g-conv a-of-htm g〉

Knowing the formula holds under conversions from Herbrand terms to ’a we can
use the bijectivity of the semantics to use Herbrand terms themselves. Using
this we can apply the original completeness result and we are done:

have 〈list-all (semantics ?e ?f ?g) z −→ semantics ?e ?f ?g p〉

using assms by blast
then show 〈list-all (semantics e f g) z −→ semantics e f g p〉

using p-a-of-hterm semantics-bij by (metis list .pred-cong)
qed
then show ?thesis
using assms natded-complete by blast

qed

The result is summed up in the theorem and corollary below.

theorem completeness: 〈infinite (UNIV :: (′a :: countable) set) =⇒
sentence p =⇒ ∀ (e :: nat ⇒ ′a) f g . semantics e f g p =⇒ OK p []〉

by (simp add : completeness ′)

corollary
〈sentence p =⇒ ∀ (e :: nat ⇒ nat) f g . semantics e f g p =⇒ OK p []〉

using completeness by fast

8.9 The Löwenheim-Skolem Theorem 85

In the original natded-complete theorem the domain is fixed to Herbrand terms.
These include a constant and function symbol so that domain is infinite. Since this
alternate completeness proof relies on a bijection between the countable domain
and the domain of Herbrand terms, we need to assume that the countable domain
is infinite as well. Finite model theory deals with the case of finite domains and
is beyond the scope of this thesis, as is uncountable domains.

8.9 The Löwenheim-Skolem Theorem

The formalization also includes a proof of the Löwenheim-Skolem theorem which
could not be ported directly from Berghofer’s formalization.

The following quote by Avigad explains the theorem well [Avi06]:

In modern terms, a first-order “fleeing equation” ’ is a first-order
sentence that is true in every finite model, but not true in every
model. Löwenheim’s theorem asserts that such a sentence can be
falsified in a model whose elements are drawn from a countably
infinite domain. Since a sentence is true in a model if and only if its
negation is false, we can restate Löwenheim’s theorem in its modern
form: if a sentence has a model, it has a countable model (that is,
one whose domain is finite or countably infinite).

It is the theorem in this modern form that we will prove here. Assuming a set of
sentences is satisfiable, we will construct a countable model for the sentences.

8.9.1 Satisfiable Sets are a Consistency Property

The Löwenheim-Skolem theorem is proven by showing that the set of satisfiable
sets is a consistency property and then applying the model existence theorem.

We start by proving the former:

theorem sat-consistency :
〈consistency {S . infinite (− (

⋃
p ∈ S . params p)) ∧

(∃ f . ∀ p ∈ S . semantics e f g p)}〉
(is 〈consistency ?C 〉)

86 Formalizing Completeness

The sets, ?S, we consider leave infinitely many parameters unused and are
satisfiable under some function interpretation f . In the proof we look at an
arbitrary set S and show that it satisfies the conditions for ?C being consistent.
We obtain the f that satisfies the formulas in S before showing any cases:

unfolding consistency-def
proof (intro allI impI conjI)
fix S :: 〈fm set〉
assume 〈S ∈ ?C 〉

then have inf-params: 〈infinite (− (
⋃
p ∈ S . params p))〉

and 〈∃ f . ∀ p ∈ S . semantics e f g p〉

by blast+
then obtain f where ∗: 〈∀ x ∈ S . semantics e f g x 〉 by blast

All the cases except the ones for δ formulas are trivial. One of these, the Exi
one, is shown below.

{ fix P
assume 〈Exi P ∈ S 〉

then obtain y where 〈semantics (put e 0 y) f g P 〉

using ∗ by fastforce
moreover obtain x where ∗∗: 〈x ∈ − (

⋃
p ∈ S . params p)〉

using inf-params infinite-imp-nonempty by blast
then have 〈x /∈ params P 〉

using 〈Exi P ∈ S 〉 by auto
moreover have 〈∀ p ∈ S . semantics e (f (x := λ-. y)) g p〉

using ∗ ∗∗ by simp

We have obtained y that satisfies the quantified formula and a free parameter x.
Mapping x to y preserves the semantics of the formulas in S since x is free in S.

ultimately have 〈∀ p ∈ S ∪ {sub 0 (Fun x []) P}.
semantics e (f (x := λ-. y)) g p〉

by simp
moreover have

〈infinite (− (
⋃
p ∈ S ∪ {sub 0 (Fun x []) P}. params p))〉

using inf-params by (simp add : set-inter-compl-diff)
ultimately show 〈∃ x . S ∪ {sub 0 (Fun x []) P} ∈ ?C 〉

by blast }

The entire set S ∪ P [x/0] is therefore satisfied under f [x ← y]. Moreover the
number of parameters unused by S is still infinite after extending the S with
P [x/0]. Ultimately the parameter x exists and makes S ∪ P [x/0] part of ?C.

8.9 The Löwenheim-Skolem Theorem 87

8.9.2 Unused Parameters

To apply the model existence theorem the formula we want a model for needs
to leave infinitely many parameters unused. Berghofer ensures this by letting
the function symbols be the natural numbers and doubles every identifier in S
ensuring every odd number is unused. In NaDeA the identifiers are fixed to be
strings so we need to employ a different but similar trick. For this we will use
the two following functions:

primrec double :: 〈 ′a list ⇒ ′a list〉 where
〈double [] = []〉 |
〈double (x#xs) = x # x # double xs〉

fun undouble :: 〈 ′a list ⇒ ′a list〉 where
〈undouble [] = []〉 |
〈undouble [x] = [x]〉 |
〈undouble (x#-#xs) = x # undouble xs〉

The first function duplicates every character in the function symbol while the
latter contracts it again. This duplication leaves every identifier of odd length
unused analogously to Berghofer’s doubling of numbers.

That undouble cancels double is shown by induction over the argument list:

lemma undouble-double-id [simp]: 〈undouble (double xs) = xs〉

by (induct xs) simp-all

Showing that applying double as a parameter substitution has the wanted effect
is trickier. For this we will need two lemmas. The first says that the set of
doubled lists with an added element in front is infinite:

lemma infinite-double-Cons: 〈infinite (range (λxs. a # double xs))〉
using undouble-double-id infinite-UNIV-listI
by (metis (mono-tags, lifting) finite-imageD inj-onI list .inject)

The seconds says that a doubled list with an added element in front can never
be equal to a doubled list. This is proved by observing that the parity of their
lengths must differ:

88 Formalizing Completeness

lemma double-Cons-neq : 〈a # (double xs) 6= double ys〉

proof −
have 〈odd (length (a # double xs))〉
by (induct xs) simp-all

moreover have 〈even (length (double ys))〉
by (induct ys) simp-all

ultimately show ?thesis
by metis

qed

Finally we get to the main result which is proven by the rule infinite-super. This
says that if an infinite set is a subset of another set, then the superset must also
be infinite. Thus we use the previous result that the set, T , of doubled lists with
an added element in front, is infinite. Moreover we show that given a set, Spar,
of doubled parameters, the inverse of this is a subset of T . The latter follows
from the fact that Spar and T cannot have any elements in common:

lemma doublep-infinite-params:
〈infinite (− (

⋃
p ∈ psubst double ‘ S . params p))〉

proof (rule infinite-super)
fix a
show 〈infinite (range (λxs :: id . a # double xs))〉
using infinite-double-Cons by metis

next
fix a
show 〈range (λxs. a # double xs) ⊆
− (

⋃
p ∈ psubst double ‘ S . params p)〉

using double-Cons-neq by fastforce
qed

8.9.3 The Theorem

We now have the machinery necessary to prove the Löwenheim-Skolem theorem.
It is formulated as follows:

theorem loewenheim-skolem:
assumes 〈∀ p ∈ S . semantics e f g p〉 〈∀ p ∈ S . closed 0 p〉

defines 〈C ≡ {S . infinite (− (
⋃
p ∈ S . params p)) ∧

(∃ f . ∀ p ∈ S . semantics e f g p)}〉
defines 〈C ′ ≡ mk-finite-char (mk-alt-consistency (close C))〉

defines 〈H ≡ Extend (psubst double ‘ S) C ′ from-nat〉
shows 〈∀ p ∈ S . semantics e ′ (λxs. HFun (double xs))

(λi l . Pre i (tms-of-htms l) ∈ H) p〉

8.9 The Löwenheim-Skolem Theorem 89

We assume that all the sentences in S are satisfiable and show that they are
satisfiable in a Herbrand model wherein we have doubled the identifier names.
The proof continues by looking at an arbitrary formula p ∈ S which we will show
is satisfiable. First we use the result above to show that doubling the identifiers
in S makes it part of the consistency property C:

proof (intro ballI impI)
fix p
assume 〈p ∈ S 〉

let ?g = 〈λi l . Pre i (tms-of-htms l) ∈ H 〉

have 〈∀ p ∈ psubst double ‘ S . semantics e (λxs. f (undouble xs)) g p〉

using 〈∀ p ∈ S . semantics e f g p〉 by (simp add : psubst-semantics)
then have 〈psubst double ‘ S ∈ C 〉

using C-def doublep-infinite-params by blast

The rest of the proof is then simply a matter of applying the model existence
theorem after proving the necessary prerequisites.

moreover have 〈psubst double p ∈ psubst double ‘ S 〉

using 〈p ∈ S 〉 by blast
moreover have 〈closed 0 (psubst double p)〉
using 〈∀ p ∈ S . closed 0 p〉 〈p ∈ S 〉 by simp

moreover have 〈consistency C 〉

using C-def sat-consistency by blast
ultimately have 〈semantics e ′ HFun ?g (psubst double p)〉
using C-def C ′-def H-def model-existence by simp

then show 〈semantics e ′ (λxs. HFun (double xs)) ?g p〉

using psubst-semantics by blast
qed

C is consistent, doubling p makes it part of the doubled S which is a member of
C, and sets in C leave infinitely many parameters unused by construction. Thus
we can obtain a model for doubled p and this is equivalent to a model which
doubles p during evaluation. This concludes the proof.

Let us recap what we know at this point. We just proved that if a sentence is
satisfiable then it is so in a model with the domain of Herbrand terms. Thus if
it is valid then it is true in all models that are Herbrand. In the introduction
we proved using the soundness and completeness of the proof system that if a
sentence is true in all interpretations with the natural numbers as domain, then

90 Formalizing Completeness

it is valid in general — and we might as well have used the domain of Herbrand
terms instead of the natural numbers. The other direction follows trivially as
explained previously.

Combining these facts we arrive at the Herbrand model theorem: A sentence
is valid if and only if it is true in all interpretations that are Herbrand [Fit96,
theorem 9.5.4].

Chapter 9

On Open Formulas

Open formulas are strange beasts. The meaning of a variable in a formula is
determined by the quantifier binding it: does it represent every element of the
domain or just some specific element? So what should we think of a formula like

p(x)→ p(y)

where x and y are unbound variables, not constants. It is unclear. One solution
is to universally close the formula, binding every free variable with a universal
quantifier like this:

∀x.∀y.p(x)→ p(y)

We call this the universal closure of p and in this interpretation the formula is
not valid. On the other hand the following formula is clearly valid no matter
how we interpret the free variable, as the right disjunct is always true:

p(x) ∨ (⊥ → ⊥)

92 On Open Formulas

And we can certainly derive this formula using natural deduction:

⊥ ` ⊥ → I` ⊥ → ⊥ ∨I2` p(x) ∨ (⊥ → ⊥)

We can also derive it in the formalization:

lemma open-example:
〈OK (Dis (Pre ′′p ′′ [Var x]) (Imp Falsity Falsity)) []〉

apply (rule Dis-I2)
apply (rule Imp-I)
apply (rule Assume)
apply simp
done

The index of the variable does not even have to be specified. While the semantics
of free variables are unclear in the textbook formulation, it is necessarily specified
in the formalization. Here variables are looked up in the environment, e, and
as this is represented as a function, from the natural numbers into the chosen
domain, its value is defined even for free variables. Thus a proof of semantics e
f g p where the e is implicitly quantified universally, means that the formula p
is true no matter what e maps the variables to. As such they are treated as if p
has been universally closed.

In the following I will show how to extend the proof system and remove the
restriction that formulas must be closed in the completeness proof. First we will
handle the case of formulas that are valid given no assumptions and then see
how to apply this result to the case of an arbitrary list of assumptions.

9.1 Assuming Nothing

Let us consider first formulas that should be derivable from the empty list of
assumptions.

An initial attempt to show completeness for open formulas could be to extend
the proof by Fitting that was explained and formalized in the previous chapters.
This is not possible, however, as it relies crucially on Hintikka’s lemma. In the
predicate case of the proof of Hintikka’s lemma we need the fact that the formula

9.1 Assuming Nothing 93

is closed, because then its constituent terms are closed and the term interprets
to itself in the Herbrand model. Open terms cannot interpret to themselves, as
Herbrand terms are closed by definition.

Instead we will take a detour to show completeness of an open formula. To use
the existing completeness proof we need to close the formula and ensure it is
still valid. But then we obtain a proof of the closed formula and need to show
that we can derive the original formula from this. This leaves open the questions
of how to do each of these steps.

9.1.1 Strategy

There are two obvious ways to close a formula. One, the universal closure, was
presented above. The other consists in substituting every free variable with a
fresh constant. I have chosen the first approach, universally closing the formula,
as it is easier to keep track of how many quantifiers have been added than to
remember which variables were mapped to which constants. In practice, proving
that the universal closure closes the formula is also simpler since the formalization
checks if a formula is closed by counting the number of passed quantifiers.

I initially attempted to derive the original formula directly from its universal
closure, but the following example shows why this is tricky to formalize. Consider
the following open formula and its universal closure in de Bruijn notation:

p(0, 1, 2) ; ∀∀∀p(0, 1, 2)

Now the only option we have for eliminating universal quantifiers in the proof
system is the Uni-E rule. This says that we must substitute something for
zero, immediately after removing a quantifier. Doing this with the variables in
decreasing order gives the correct result in the end. After the first substitution
the variable is pointing way too far:

(∀∀p(0, 1, 2))[2/0] ; ∀((∀p(0, 1, 2))[3/1]) ; ∀∀(p(0, 1, 2)[4/2]) ; ∀∀p(0, 1, 4)

But because we substitute for zero again, it will be decremented:

(∀p(0, 1, 4))[1/0] ; ∀(p(0, 1, 4)[2/1]) ; ∀p(0, 2, 3)

94 On Open Formulas

And finally we are back at the original formula:

p(0, 2, 3))[0/0] ; p(0, 1, 2)

This works because while the variable we insert is incremented by each quantifier
it passes, those quantifiers are later removed and the variable decremented for
each of them as well, returning it to its original value. Formalizing that this
works turned out to be very tricky as one has to keep track of this relationship
between the variables and number of quantifiers. Instead we will derive a version
of the formula where every variable bound by the universal closure is replaced
with a fresh constant. Then we can use the newly introduced inference rule
to turn these constants back into the original variables. And by doing these
substitutions in the proper order we will be able to cancel them out pair-wise,
instead of having to reason about the entire chain of substitutions at once, as
we have to do to show that the above method works.

De Bruijn indices have been very useful in the other parts of the formalization,
because, as noted elsewhere [Ber12; Ber07b], very little background theory needs
to be developed for their use. In this case however their subtle interaction
with substitution, as also noted in chapter 6, makes the above method hard to
formalize. If a nominal approach [BU07] could make a proof of the correctness of
the above method trivial, it might be worth switching to, even though it requires
more theory to be developed. The following solution is less radical though and
was chosen instead for this reason.

9.1.2 Substituting Constants

An interpretation may assign any meaning to a constant in a formula. As such,
constants act like universally quantified variables and it should be possible to
substitute this constant for any other term in a given proof. The inference rule
that we are going to add does this, but is actually a little bit more flexible,
allowing us to substitute away compound terms also. For instance given a proof
of p(c) we can directly obtain a proof of p(f(x, y)) and vice versa. This is
implemented almost like variable substitution using functions of these types:

subc-term :: 〈id ⇒ tm ⇒ tm ⇒ tm〉 and
subc-list :: 〈id ⇒ tm ⇒ tm list ⇒ tm list〉
subc :: 〈id ⇒ tm ⇒ fm ⇒ fm〉

subcs :: 〈id ⇒ tm ⇒ fm list ⇒ fm list〉

9.1 Assuming Nothing 95

The following two clauses are worth examining, namely the case for functions
and one of the quantifier cases:

subc-term c s (Fun i l) = (if i = c then s else Fun i (subc-list c s l))
subc c s (Exi p) = Exi (subc c (inc-term s) p)

For functions we replace the term if the symbol matches and otherwise we
recurse on the function’s arguments. For quantifiers we increment the term when
recursing on the quantified formula as we do when substituting for variables.

Thus we can define the extended proof system consisting of all the proper rules,
implication elimination and the new rule dubbed Subtle:

inductive OK ′ :: 〈fm ⇒ fm list ⇒ bool 〉 where
Proper : 〈OK p z =⇒ OK ′ p z 〉 |
Imp-E ′: 〈OK ′ (Imp p q) z =⇒ OK ′ p z =⇒ OK ′ q z 〉 |
Subtle: 〈OK ′ p z =⇒ new-term c s =⇒ OK ′ (subc c s p) (subcs c s z)〉

We make sure to substitute uniformly among the formula and its assumptions
and for technical reasons we require c to be free in the term we insert. This will
allow us to prove an essential lemma later. It also means that c will be free in
both p and z after the substitution.

In all likelihood this rule or a suitable variant of it can be derived from the
existing rules. This was attempted by induction over the inference rules but
proved difficult in the Exi-E case where the interaction between variable and
constant substitution is tricky. The case relies on being able to commute the
two substitutions, but the order matters as s may not be closed and it cannot
be for our purposes. I have chosen instead to prove the above rule sound and
work with this extended proof system.

Note that the extension is very conservative; as soon as we move from OK to
OK’ the only inferences we are allowed to apply are implication elimination and
constant substitution. None of the other original rules are allowed. As such it is
very like that this new rule is not actually necessary for completeness of open
formulas, but simply makes it easier to prove it.

9.1.3 Soundness

It is important to ensure that we have not traded soundness for completeness. If
we were willing to make that bargain we could get away with a much simpler

96 On Open Formulas

proof system. Luckily we can rely on the existing soundness proof and only have
to prove the new rule sound.

The substitute lemma proved the correspondence between the syntactic act of
substituting a variable and the semantic act of modifying the environment. We
need a similar lemma here showing the correspondence between function symbol
substitution and modifying the interpretation. The proof follows the proof of
substitute and is omitted, as is its extension to lists of assumptions substitutecs.

lemma substitutec:
〈semantics e (f (c := λ-. semantics-term e f s)) g p =
semantics e f g (subc c s p)〉

Given this rule we can now state the soundness of the new system. All the
hard work has already been done however; the soundness of the old rules are
given by soundness’ and the soundness of the new rule follows directly from the
substitutec and substitutecs lemmas:

lemma Subtle-soundness ′:
〈OK ′ p z =⇒ list-all (semantics e f g) z =⇒ semantics e f g p〉

proof (induct p z arbitrary : f rule: OK ′.induct)
case (Proper p z)
then show ?case
using soundness ′ by blast

next
case (Subtle p z c s)
then show ?case
using substitutec substitutecs by blast

qed simp

Again we can state this result for the case of no assumptions:

theorem Subtle-soundness: 〈OK ′ p [] =⇒ semantics e f g p〉

by (simp add : Subtle-soundness ′)

9.1.4 Universal Closure

To recapitulate, we are going to universally close the formula to obtain a proof of
it, then derive the same formula using fresh constants instead of the newly closed
variables and finally use the new inference rule to derive the original formula.

9.1 Assuming Nothing 97

The following primitive recursive function will do the work of closing a formula:

primrec put-unis :: 〈nat ⇒ fm ⇒ fm〉 where
〈put-unis 0 p = p〉 |
〈put-unis (Suc m) p = Uni (put-unis m p)〉

A few lemmas about this function will be useful later. First, a variable is
incremented accordingly when substituting under a number of quantifiers:

lemma sub-put-unis [simp]:
〈sub i (Fun c []) (put-unis k p) = put-unis k (sub (i + k) (Fun c []) p)〉
by (induct k arbitrary : i) simp-all

Second, if a formula with a number of quantifiers is closed at some level, the
formula without those quantifiers is closed a correspondingly higher level:

lemma closed-put-unis: 〈closed m (put-unis k p) = closed (m + k) p〉

by (induct k arbitrary : m) simp-all

We also need to show that every formula can actually be closed by adding a
number of quantifiers in front of it. We could calculate this number explicitly
but that is more work than necessary. Instead we simply prove its existence:

lemma ex-closed : 〈∃m. closed m p〉

The lemma is trivial to prove by induction over the formula so I will omit the
details; surprisingly Isabelle cannot prove it automatically. With this lemma we
can know that every formula has a universal closure:

lemma ex-closure: 〈∃m. sentence (put-unis m p)〉
using ex-closed closed-put-unis by simp

Finally, if a formula is valid, any free variable has been looked up in all envi-
ronments with the formula still being true, so we can universally quantify the
formula any number of times and it remains valid:

lemma valid-put-unis: 〈∀ (e :: nat ⇒ ′a) f g . semantics e f g p =⇒
semantics (e :: nat ⇒ ′a) f g (put-unis m p)〉

by (induct m arbitrary : e) simp-all

98 On Open Formulas

9.1.4.1 Constants for Quantifiers

We need a function for substituting the quantifiers with a list of constants:

fun consts-for-unis :: 〈fm ⇒ id list ⇒ fm〉 where
〈consts-for-unis (Uni p) (c#cs) =
consts-for-unis (sub 0 (Fun c []) p) cs〉 |

〈consts-for-unis p - = p〉

If the formula is quantified and the list has more constants we do the substitution,
otherwise we simply return the original formula. The function is designed to
mimic the Uni-E rule. It is important here to substitute before making the
recursive call to make the following proof easier:

lemma consts-for-unis: 〈OK (put-unis (length cs) p) [] =⇒
OK (consts-for-unis (put-unis (length cs) p) cs) []〉

proof (induct cs arbitrary : p)
case Nil
then show ?case
by simp

next
case (Cons c cs)
then have 〈OK (Uni (put-unis (length cs) p)) []〉

by simp
then have 〈OK (sub 0 (Fun c []) (put-unis (length cs) p)) []〉

using Uni-E by blast
then show ?case
using Cons by simp

qed

We are proving that given a proof of some formula with some number of universal
quantifiers in front, we can derive a proof of the formula with the universal
quantifiers substituted for constants. Only the Cons case is interesting. We start
by unfolding the assumption one level, putting the Uni constructor outermost.
Then we eliminate this for the constant c using the Uni-E rule. This substitution
can go through the call to put-unis using the sub-put-unis lemma making the
induction hypothesis apply. The recursive call in consts-for-unis is made on
exactly the term this applies to so the simplifier can finish the proof. By recursing
before-hand this would not be the case and the lemma would be correspondingly
harder to prove.

9.1 Assuming Nothing 99

9.1.5 Variables for Constants

Given some example formula with free variables it has so far gone through the
following transformations:

∀p(0, 1, 3) ; ∀∀∀∀p(0, 1, 3) ; ∀∀∀p(0, 1, a) ; ∀∀p(0, 1, a) ; ∀p(0, c, a)

That is, assuming the list of constants used to eliminate the quantifiers was
[a, b, c], as the outermost is eliminated first, so that becomes a, while b is lost
as there is no variable 2 and 1 is replaced by c. The 0 is bound and thus not
replaced. Each of these substitutions were done for the variable 0, but because
we passed binders on the way all of the variables were affected.

Now we need to know what to substitute the constants for to obtain the original
formula. To do this we count how many added binders we passed during a specific
substitution as that corresponds to the number of times 0 was incremented and
thus the variable ultimately replaced by the constant. For instance a passed two
added binders (the third was eliminated just before the substitution) so we get:

(∀p(0, c, a))[2/a] ; ∀(p(0, c, a)[3/a]) ; ∀p(0, c, 3)

which is correct. The variable to substitute with thus corresponds to the length
of the list from the position of the constant and forward, excluding the constant
itself as that corresponds to the eliminated binder. This is calculated by the
following function while doing the substitution:

primrec vars-for-consts :: 〈fm ⇒ id list ⇒ fm〉 where
〈vars-for-consts p [] = p〉 |
〈vars-for-consts p (c # cs) =
subc c (Var (length cs)) (vars-for-consts p cs)〉

And using the Subtle rule we can easily prove by induction on the list that such
a substitution can be derived in the extended proof system:

lemma vars-for-consts:
〈OK ′ p [] =⇒ OK ′ (vars-for-consts p xs) []〉

using Subtle by (induct xs arbitrary : p) fastforce+

100 On Open Formulas

Finally we obtain the crucial result that substituting the variables for constants
for variables returns the original formula, given that the constants are all distinct
and do not appear in the given formula:

lemma vars-for-consts-for-unis:
〈closed (length cs) p =⇒ ∀ c ∈ set cs. c /∈ params p =⇒ distinct cs =⇒
vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs = p〉

using sub-free-params-all subc-sub by (induct cs arbitrary : p) auto

Since the definitions line up so well the lemma can be proven automatically by
Isabelle after instantiating the induction correctly and adding two lemmas. The
sub-free-params-all lemma states that if a set of constants are free in p, they are
still free after substituting a different constant into p.

Before looking at the subc-sub lemma we need to consider the chain of recursive
calls made by vars-for-consts and consts-for-unis. Starting with the latter, we
do the substitution before recursing so the first substitution passes through all
the binders while the last passes through none. As passing through a binder
corresponds to substituting for an incremented variable this is equivalent to the
following chain of substitutions by the indicated constants, where m = length cs :

sub 0 cm−1 (sub 1 cm−2 (. . . (sub (m-1) c0 p)))

The recursive call to vars-for-consts is made before the substitution and the
variable we substitute for is effectively decremented at each call, making for a
chain of calls looking like this (including the start of the chain above):

subc c0 (m-1) (subc c1 (m-2) (. . . (subc cm−1 0 (sub 0 cm−1 . . .))))

It is evident that the two chains of calls line up perfectly when composed. Thus
by proving that each pair of calls cancel each other out it follows that the whole
chain cancels. This cancelling of pairs is what the subc-sub lemma proves:

lemma subc-sub: 〈c /∈ params p =⇒ closed (Suc m) p =⇒
subc c (Var m) (sub m (Fun c []) p) = p〉

by (induct p arbitrary : m) simp-all

We can assume that the formula is closed at level m+1 because the preceding
substitution inserted the variable m and this is the highest variable inserted so

9.1 Assuming Nothing 101

far in the chain. From there it follows by induction on the formula that the two
calls cancel out and we obtain the original formula.

It is worth reflecting on this proof which is deceptively simple. We could have
substituted the constants for variables in any other order and obtained the same
result, but then we would not have obtained this “telescoping” chain of calls that
cancel each other out. The proof is simple only because the hard work was put
into coming up with the right definitions. Even in a system like Isabelle with
powerful proof search, good definitions make a world of difference.

9.1.6 Obtaining Fresh Constants

So far we have worked under the assumption that we had suitable fresh and
distinct constants available for our operations. To discharge this assumption we
need to prove that this is actually the case. For this we have two immediate
options: Constructing suitable constants or proving that they must exist. Given
the range of lemmas in Isabelle’s libraries to draw on, the latter will be easier.

We start by showing that there always exists another fresh constant distinct
from a given list. This is done by noting that the set of parameters used by the
formula and list of constants is finite as both are themselves finite. Since the
identifiers are strings, lists of characters, there are infinitely many of these and
thus we can always obtain one fresh to finite set:

lemma fresh-constant : 〈∃ c. c /∈ set cs ∧ c /∈ params p〉

proof −
have 〈finite (set cs ∪ params p)〉
by simp

then show ?thesis
by (metis UnI1 UnI2 ex-new-if-finite infinite-UNIV-listI)

qed

The constants are used to eliminate the universal quantifiers and we need as
many of those as it takes to close the formula. Therefore we need to show that
we can obtain just as many constants. Induction on the number of quantifiers
needed is a good strategy as we can use the lemma above in the inductive step:

lemma fresh-constants:
assumes 〈sentence (put-unis m p)〉
shows 〈∃ cs. length cs = m ∧ (∀ c ∈ set cs. c /∈ params p) ∧ distinct cs〉

102 On Open Formulas

proof (induct m)
case (Suc m)
then obtain cs where

〈length cs = m ∧ (∀ c ∈ set cs. c /∈ params p) ∧ distinct cs〉

by blast
moreover obtain c where 〈c /∈ set cs ∧ c /∈ params p〉

using Suc fresh-constant by blast
ultimately have 〈length (c # cs) = Suc m ∧

(∀ c ∈ set (c # cs). c /∈ params p) ∧ distinct (c # cs)〉
by simp

then show ?case
by blast

qed simp

We start by obtaining the m fresh constants given to us by the induction
hypothesis. Moreover we use the fresh-constant lemma to obtain one more and
ultimately we show that adding this to the rest fits the criteria.

Let us immediately put these constants to good use and show that if we can
derive the universal closure of p in the original proof system then we can derive
p itself in the extended system:

lemma remove-unis:
assumes 〈sentence (put-unis m p)〉 〈OK (put-unis m p) []〉

shows 〈OK ′ p []〉

proof −
obtain cs :: 〈id list〉 where 〈length cs = m〉

and ∗: 〈distinct cs〉 and ∗∗: 〈∀ c ∈ set cs. c /∈ params p〉

using assms fresh-constants by blast
then have 〈OK (consts-for-unis (put-unis (length cs) p) cs) []〉

using assms consts-for-unis by blast
then have 〈OK ′ (vars-for-consts (consts-for-unis

(put-unis (length cs) p) cs) cs) []〉

using Proper vars-for-consts by blast
moreover have 〈closed (length cs) p〉

using assms 〈length cs = m〉 closed-put-unis by simp
ultimately show 〈OK ′ p []〉

using vars-for-consts-for-unis ∗ ∗∗ by simp
qed

We start by obtaining some suitable constants and then deriving the formula
where these constants are substituted for the universal closure. Then we switch
to the extended proof system to derive the formula with the original variables
substituted for the fresh constants. Moreover we note that the original formula

9.2 Implications and Assumptions 103

is closed at a suitable level and ultimately this allows us to show that we have
derived the original formula. Again we see the importance of decomposing a
proof into smaller lemmas for readability and even the ability to come up with
proofs as we can up the level of abstraction, taking bigger steps with the lemmas.

Now we can close a formula ensuring validity and remove the closure again in
the extended system. Thus we are ready to move on to handling assumptions.

9.2 Implications and Assumptions

Intuitively the following equivalence between proofs using assumptions and
implications should hold:

p1, p2, . . . , pn ` q ≡ ` (p1 → p2 → . . .→ pn → q)

We can go from the left one to the right one using the → I rule, but it is not
apparent how to go back again. This section proves how, its essence being the
following proof which we shall work towards:

lemma shift-imp-assum:
assumes 〈OK ′ (Imp p q) z 〉

shows 〈OK ′ q (p # z)〉
proof −
have 〈set z ⊆ set (p # z)〉
by auto

then have 〈OK ′ (Imp p q) (p # z)〉
using assms weaken-assumptions ′ by blast

moreover have 〈OK ′ p (p # z)〉
using Proper Assume by simp

ultimately show 〈OK ′ q (p # z)〉
using Imp-E ′ by blast

qed

We start by weakening the proof to assume p as well. Then we can derive a
proof of p using the Assume rule and use this to eliminate the implication and
obtain the wanted proof of q. This is the only place we need the Imp-E’ rule.

The technique is simple but the proof that we can weaken the assumptions is
delicate. To prove this we first need to prove that we can map an injective
function over the parameters in a proof.

104 On Open Formulas

9.2.1 Renaming Parameters

An injective function maps distinct elements to distinct values, so by mapping
it across the formulas in a proof we are effectively just renaming terms. We
prove that this is legal first for OK and then its extension OK’. The proof is by
induction on the rules and the cases are cumbersome but trivial and omitted:

lemma OK-psubst :
〈OK p z =⇒ inj f =⇒ OK (psubst f p) (map (psubst f) z)〉

The Exi-E and Uni-I cases rely on the following proof that a new constant is
still new after it and every parameter has been mapped by an injective function:

lemma news-psubst :
〈news c z =⇒ inj f =⇒ news (f c) (map (psubst f) z)〉
by (induct z) (simp-all add : inj-image-mem-iff)

Moving on to the same proof for OK’ :

lemma OK ′-psubst :
〈OK ′ p z =⇒ inj f =⇒ OK ′ (psubst f p) (map (psubst f) z)〉

The Proper case can reuse the proof above and the Imp-E’ case is trivial.
Consider instead the Subtle case:

case (Subtle p z c s)
then have 〈OK ′ (psubst f p) (map (psubst f) z)〉
by blast

then have 〈OK ′ (subc (f c) (psubst-term f s) (psubst f p))
(subcs (f c) (psubst-term f s) (map (psubst f) z))〉

using Subtle OK ′.Subtle by (simp add : inj-image-mem-iff)
then show ?case
using 〈inj f 〉 subc-psubst subcs-psubst by simp

The first line is given by the induction hypothesis. Next we subc the term
psubst-term f s for the constant f c. This trick allows us to prove the case by
applying the following lemma and commuting the two substitutions:

9.2 Implications and Assumptions 105

lemma subc-psubst : 〈inj f =⇒
psubst f (subc c s p) = subc (f c) (psubst-term f s) (psubst f p)〉

by (induct p arbitrary : s) simp-all

The insight here is that because the function is injective, substituting for f c after
the mapping affects exactly the same elements as substituting for c before. So
when picking the pre-mapped terms above, this is undone by the commutation.

When proving this I noticed that I needed to commute the two calls and thought
about what happens to the terms in question when doing this. Knowing this
allowed me to choose the right terms above making the proof fairly simple.

9.2.2 Weakening Assumptions

We are going to prove a stronger lemma about weakening assumptions for the
original proof system than the extended one. The way we did the extension
allows us to do this, making the work worthwhile even outside the context of
open formulas.

9.2.2.1 Without rule Subtle

The following lemma states that given a proof from some assumptions, we can
add any assumptions we want and even permute all of them and the formula
can still be derived:

lemma weaken-assumptions: 〈OK p z =⇒ set z ⊆ set z ′ =⇒ OK p z ′〉
proof (induct p z arbitrary : z ′ rule: OK .induct)

Again most of the cases are cumbersome but trivial; the ones for Exi-E and
Uni-I are not. We will consider the first one in depth, but omitting the lemmas
used along the way. The case is instantiated like this:

case (Exi-E p z q c)

We need to prove OK q z’ and we are given the following facts by the induction
where we can instantiate ?-prefixed names as we want:

106 On Open Formulas

OK (Exi p) z
set z ⊆ set ?z ′ =⇒ OK (Exi p) ?z ′

OK q (sub 0 (Fun c []) p # z)
set (sub 0 (Fun c []) p # z) ⊆ set ?z ′ =⇒ OK q ?z ′

news c (p # q # z)
set z ⊆ set z ′

The problem is that to apply the Exi-E rule we need a proof that the used
constant is free in z’ but here we only know that c is free in the subset z. To
make matters worse we need to use precisely the given constant c to apply the
induction hypotheses.

To solve this we will obtain a completely free constant, fresh, and substitute any
c in z’ with this fresh variable, resulting in the new list of assumptions ?z’ :

obtain fresh where ∗: 〈fresh /∈ (
⋃
p ∈ set z ′. params p) ∪ params p ∪

params q ∪ {c}〉
using finite-params ex-new-if-finite List .finite-set infinite-UNIV-listI
by (metis finite.emptyI finite.insertI finite-UN finite-Un)

let ?z ′ = 〈map (psubst (id(c := fresh))) z ′〉

Crucially, z is also a subset of the new ?z’ since c is free in z. Thus every
common element was unchanged by the parameter substitution. This allows us
to derive Exi p from ?z’ :

have 〈c /∈ (
⋃
p ∈ set z . params p)〉

using Exi-E news-params by (simp add : list-all-iff)
then have 〈set z ⊆ set ?z ′〉
using Exi-E psubst-fresh-subset by metis

then have 〈OK (Exi p) ?z ′〉
using Exi-E by blast

Moreover adding the same element to both lists does not change this relation,
allowing us to apply another induction hypothesis:

moreover have 〈set (sub 0 (Fun c []) p # z) ⊆
set (sub 0 (Fun c []) p # ?z ′)〉

using 〈set z ⊆ set ?z ′〉 by auto
then have 〈OK q (sub 0 (Fun c []) p # ?z ′)〉
using Exi-E by blast

9.2 Implications and Assumptions 107

Furthermore since fresh was chosen to be distinct from c, c does not appear at
all in ?z’ as it has been substituted away. Thus it is new to all of p, q and ?z’ :

moreover have 〈c 6= fresh〉

using ∗ by blast
then have ∗∗: 〈∀ p ∈ set ?z ′. c /∈ params p〉

using map-psubst-fresh-free by simp
then have 〈list-all (λp. c /∈ params p) (p # q # ?z ′)〉
using Exi-E by (simp add : list-all-iff)

then have 〈news c (p # q # ?z ′)〉
using news-params by blast

These facts are exactly those we need to apply the Exi-E rule, concluding:

ultimately have 〈OK q ?z ′〉
using Exi-E OK .Exi-E by blast

But we needed to derive q from z’, not the modified ?z’. Fortunately ?z’ is
constructed such that we can recover z. We cannot simply do this by renaming
fresh to c, however, as that is not an injective operation. Instead we will
simultaneously map c to fresh as well, and utilize the fact that c is free in ?z’.
The mapping is justified by the swap-param lemma derived from OK-psubst and
that the substitution cancels is shown in two steps:

then have 〈OK (psubst (id(fresh := c, c := fresh)) q)
(map (psubst (id(fresh := c, c := fresh))) ?z ′)〉
using swap-param by blast

moreover have 〈map (psubst (id(fresh := c))) ?z ′ = z ′〉
using ∗ map-psubst-fresh-away by blast

then have 〈map (psubst (id(fresh := c, c := fresh))) ?z ′ = z ′〉
by (metis (mono-tags, lifting) ∗∗ map-eq-conv psubst-upd)

Finally we simply need to show that q is unaffected by the substitution because
fresh was to chosen to be free and we can conclude the case:

moreover have 〈psubst (id(fresh := c, c := fresh)) q = q〉

using ∗ Exi-E by simp
ultimately show 〈OK q z ′〉
by simp

108 On Open Formulas

The need to employ this trick was what prompted the proof of OK-psubst which
is also an interesting result in itself.

It follows directly from this formulation of weakening that we can permute the
assumptions freely:

lemma permute-assumptions: 〈OK p z =⇒ set z = set z ′ =⇒ OK p z ′〉
using weaken-assumptions by blast

9.2.2.2 With rule Subtle

The proof of weakening for the extended proof system uses basically the same
trick in the Subtle case as that employed above. There is one exception however,
causing us to prove the weaker, but still sufficient, lemma below:

lemma weaken-assumptions ′: 〈OK ′ p z =⇒ OK ′ p (q # z)〉
proof (induct p z arbitrary : q rule: OK ′.induct)

Here we only add a single element at a time, instead of considering the assump-
tions as sets. This is necessary because the induction in the Subtle case cannot
tell us that the fixed c is new to z as we were allowed to assume previously. To
circumvent this we make use the following functions:

let ?f = 〈id(c := fresh)〉
let ?f ′ = 〈id(c := fresh, fresh := c)〉

Note that the goal is to prove OK’ (subc c s p) (subcs c s (q # z)). The important
thing about these functions is then, that mapping them across subc c s p (and
subcs c s z) has no effect because the c has been substituted away and fresh has
been to chosen to be completely free:

have ∗∗: 〈psubst ?f ′ (subc c s p) = subc c s p〉

using 〈new-term c s〉 ∗ params-subc psubst-subc by simp

The need for this equality was the motivation to add the new-term c s requirement
to the Subtle rule. Fortunately it is not a very unnatural constraint which is why
I decided to add it. Moreover mapping first ?f then ?f’ across q cancels out:

9.2 Implications and Assumptions 109

have 〈psubst ?f ′ (psubst ?f q) = psubst (id(fresh := c)) (psubst ?f q)〉
using ∗ psubst-fresh-free psubst-upd
by (metis (no-types, lifting) fun-upd-twist UnI2 insertCI)

then have ∗∗∗∗: 〈psubst ?f ′ (psubst ?f q) = q〉

using ∗ psubst-fresh-away by fastforce

Therefore we apply the induction hypothesis at q = psubst ?f q and use the
Subtle rule to obtain the following proof:

have 〈OK ′ (subc c s p) (subc c s (psubst ?f q) # subcs c s z)〉
using Subtle OK ′.Subtle by fastforce

And then we can eliminate the constant substitution because the constant it
applies to has been mapped away:

then have 〈OK ′ (subc c s p) (psubst ?f q # subcs c s z)〉
using ∗ subc-fresh by fastforce

then have 〈OK ′ (psubst ?f ′ (subc c s p))
(psubst ?f ′ (psubst ?f q) # map (psubst ?f ′) (subcs c s z))〉

using OK ′-psubst by (fastforce simp add : inj-on-def)
then show 〈OK ′ (subc c s p) (q # subcs c s z)〉
using ∗∗ ∗∗∗ ∗∗∗∗ by metis

The remaining lines use the OK’-psubst result to map the injective function
?f’ across the entire proof, allowing us to use the previous results to cancel
everything out.

It is really important in these proofs that we have an infinite number of identifiers
available so we can always pick a fresh one. Doing so allows us to use this trick
of parameter substitution to ensure calls can be commuted or cancelled.

9.2.3 Completeness

Before getting to the completeness proof we need a function for turning assump-
tions into implications:

primrec put-imps :: 〈fm ⇒ fm list ⇒ fm〉 where
〈put-imps p [] = p〉 |
〈put-imps p (q # z) = Imp q (put-imps p z)〉

110 On Open Formulas

We also need to show that this preserves semantics:

lemma semantics-put-imps:
〈(list-all (semantics e f g) z −→ semantics e f g p) =
semantics e f g (put-imps p z)〉
by (induct z) auto

Now we can use the previous lemma turning a single implication into an assump-
tion, to show that we can convert a chain of implications back into assumptions:

lemma remove-imps:
〈OK ′ (put-imps p z) z ′ =⇒ OK ′ p (rev z @ z ′)〉
using shift-imp-assum by (induct z arbitrary : z ′) simp-all

Finally we can prove completeness for open formulas in the extended system:

theorem Subtle-completeness ′:
assumes 〈infinite (UNIV :: (′a :: countable) set)〉
and 〈∀ (e :: nat ⇒ ′a) f g .
list-all (semantics e f g) z −→ semantics e f g p〉

shows 〈OK ′ p z 〉

We start from the formula with the reverse list of assumptions turned into
implications and assert that it is valid and thus has a valid universal closure:

proof −
let ?p = 〈put-imps p (rev z)〉

have ∗: 〈∀ (e :: nat ⇒ ′a) f g . semantics e f g ?p〉

using assms semantics-put-imps by fastforce
obtain m where ∗∗: 〈sentence (put-unis m ?p)〉
using ex-closure by blast

moreover have 〈∀ (e :: nat ⇒ ′a) f g . semantics e f g (put-unis m ?p)〉
using ∗ valid-put-unis by blast

Thus we can derive this version of the formula in the original proof system
via the original completeness proof. From this we can derive first the unclosed
formula in the extended proof system and finally turn the implications back into
assumptions giving us our final proof:

9.3 A Simpler Rule Subtle 111

ultimately have 〈OK (put-unis m ?p) []〉

using assms completeness by blast
then have 〈OK ′ ?p []〉

using ∗∗ remove-unis by blast
then show 〈OK ′ p z 〉

using remove-imps by fastforce
qed

Thus we have successfully extended the completeness proof to open formulas by
addition of the sound Subtle rule. The price for this was an extra inference rule,
but as this rule is provably sound it is a small price to pay. Moreover this rule is
only needed, along with implication elimination, in a step after the derivation in
the original proof system.

We would not need Subtle if either it could be derived in the original proof
system or the universal closure could be removed in a different way, but, as
described, it is unclear how to formalize either of these. We can however, get
away with a simpler version of Subtle if we do not care about assumptions. This
is the topic of the next section.

9.3 A Simpler Rule Subtle

We did not use the new-term c s constraint on Subtle until the proof of weakening.
Nor did we use elimination implication until we needed to turn implications back
into assumptions. Furthermore we only operated on empty lists of assumptions
when removing the universal closure. So if we do not care about assumptions we
can get away with the following simpler extension:

inductive OK-star :: 〈fm ⇒ fm list ⇒ bool 〉 where
Proper : 〈OK p z =⇒ OK-star p z 〉 |
Subtle: 〈OK-star p [] =⇒ OK-star (subc c s p) []〉

Here we only allow application of Subtle to proofs from no assumptions and we
place no restriction on c. Of course this proof system is still sound:

theorem soundness-star : 〈OK-star p [] =⇒ semantics e f g p〉

by (simp add : soundness-star ′)

We need to prove new versions of vars-for-consts and remove-unis that use the
new version of Subtle:

112 On Open Formulas

lemma vars-for-consts-star :
〈OK-star p [] =⇒ OK-star (vars-for-consts p xs) []〉

using Subtle by (induct xs arbitrary : p) simp-all

lemma remove-unis-star :
assumes 〈sentence (put-unis m p)〉 〈OK (put-unis m p) []〉

shows 〈OK-star p []〉

Note that simp-all is enough to prove vars-for-consts-star now; we do not need
fastforce as we did for the more complex rule.

The completeness proof for OK-star is also simpler than the one for OK’ since
we do not have to deal with assumptions:

theorem completeness-star :
assumes 〈infinite (UNIV :: (′a :: countable) set)〉
and 〈∀ (e :: nat ⇒ ′a) f g . semantics e f g p〉

shows 〈OK-star p []〉

proof −
obtain m where ∗: 〈sentence (put-unis m p)〉
using ex-closure by blast

moreover have 〈∀ (e :: nat ⇒ ′a) f g . semantics e f g (put-unis m p)〉
using assms valid-put-unis by blast

ultimately have 〈OK (put-unis m p) []〉

using assms completeness by blast
then show 〈OK-star p []〉

using ∗ remove-unis-star by blast
qed

If one wanted to be absolutely certain that NaDeA is complete for open formulas,
either of these versions of Subtle could be added depending on whether one
cares about assumptions or not. Again, as this extension is very conservative, it
suggests that NaDeA is complete on its own and this is simply difficult to prove.
This section has provided a formalized alternative to that proof.

Chapter 10

Conclusion

The goal of this thesis was to formalize first-order logic and this goal has certainly
been fulfilled. The syntax, semantics soundness and completeness have all been
formalized in Isabelle; completeness using a classical proof that applies only to
sentences and through my own extension to open formulas.

The next two sections will respectively discuss the obtained results reflecting on
insights gained in the process and point out future work.

10.1 Discussion

This thesis has presented the formalized natural deduction proof system NaDeA
with a thorough description of its soundness and completeness proofs. As
described in the introduction, proof systems and formalizations are useful means
for software verification, a field that is becoming more and more important with
the increasing use of computers in our daily lives. As such a thorough description
of how a textbook proof can be formalized may help in the formalization of other
proofs. Anyone seeking to develop their own proof system specifically, may use
this work as a foundation for that work.

Chapter 9 presented an extension of the completeness proof to open formulas,

114 Conclusion

which are rarely considered, a common solution being to universally close them
before deriving them. That chapter analyzed the problem and explained why one
strategy was used over another for the solution. This insight into what makes
proofs easier or harder to formalize should also be applicable more widely. For
this reason a few more insights are provided here:

When doing induction proofs it is often easier to prove a more general theorem
than a more specific one because the induction hypothesis is correspondingly
stronger. Specifically, avoiding so-called “magic numbers” that are known from
general programming and generalizing them to any number, in combination with
Isabelle’s arbitrary mechanism, can make a hard proof trivial. An example in
this work is assuming closed m where the m is always instantiated to zero.

Giving long expressions definitions with defines, or syntactic abbreviations using
the let or is constructs can provide mental leverage by hiding unimportant
details. A familiar name can be given instead of having to unpack a compound
expression whose details may not matter. Picking good and consistent names is
an important aspect of this, e.g. using C for consistency properties and S for
sets of formulas. This also makes the proof more readable and enables a closer
resemblance to a possible paper-and-pencil version of it.

In Isabelle facts may be named or referred to by copying them literally. Striking a
good balance between these two possibilities was not always easy, but introduced
names can help here by making the literal facts shorter. The literal fact S ∈ ?C
can be understood directly while S_in_C may require finding the definition,
e.g. to answer what S and C refer to. For long facts that are used a lot, giving
them a name can be the only way to ensure the proof is still readable.

In situations where an expression is rewritten the also mechanism exposes this
clearly, while accumulating facts with moreover resembles the thinking behind
the proof. On the other hand, one should not go out of one’s way to use these
to avoid names or literal facts as that will only obscure the proof.

Finally the proof search facilities in Isabelle are very powerful but should be
used with consideration. We write proofs in the declarative style such that we
may read them again, and if the steps between facts are too large to understand
for humans it is useless. Instead the proof should either take smaller steps or
the large step be justified by a named lemma that is probably an interesting
result in itself. Doing so helped me both to understand and explain the provided
completeness proof as well as to develop its extension. Some of these lemmas
may be added to the simplifier if the reasoning is obvious but otherwise should be
referenced explicitly when used, for the sake of clarity. If the goal is to formalize
all proofs one day, and that is a very reasonable goal, we should follow these
guidelines to ensure the proofs are not obscured by the formalization.

10.2 Future Work 115

10.2 Future Work

As noted previously the formalized version of Fitting’s proof contains some
redundancy compared to the textbook proof. This redundancy occurs because
Fitting treats the different types of formulas uniformly in his proofs but the
formalized proof is less abstract, handling each syntactic case distinctly.

Trying to classify types of formulas abstractly in the formalization could make
the proofs resemble Fitting’s more and make for a shorter formalization. The
completeness proof might then be instantiated for a concrete syntax and semantics
by proving certain properties about these, e.g. consistency of the semantics. This
would make it even easier to obtain completeness results for other natural
deduction proof systems.

Specifically for NaDeA, an obvious improvement would be to get rid of the Subtle
rule by either deriving it from the existing rules or by proving that the universal
closure can be removed in a different way. This should certainly be possible, but
requires reasoning in a different way that is likely harder to formalize.

116 Conclusion

Bibliography

[Avi06] Jeremy Avigad. “Review of Calixto Badesa, The Birth of Model The-
ory: Löwenheim’s Theorem in the Frame of the Theory of Relatives”.
In: The Mathematical Intelligencer 28.4 (September 2006).

[Ben12] Mordechai Ben-Ari.Mathematical Logic for Computer Science. 3rd ed.
Springer, 2012.

[Ber07a] Stefan Berghofer. “First-Order Logic According to Fitting”. In: Archive
of Formal Proofs (August 2007). http://isa-afp.org/entries/
FOL-Fitting.shtml, Formal proof development.

[Ber07b] Stefan Berghofer. “POPLmark Challenge Via de Bruijn Indices”. In:
Archive of Formal Proofs (August 2007). http://isa-afp.org/
entries/POPLmark-deBruijn.shtml, Formal proof development.
issn: 2150-914x.

[Ber12] Stefan Berghofer. “A Solution to the PoplMark Challenge Using de
Bruijn Indices in Isabelle/HOL”. In: Journal of Automated Reasoning
49.3 (2012), pp. 303–326.

[Bru72] N. G. de Bruijn. “Lambda Calculus Notation with Nameless Dum-
mies, a Tool for Automatic Formula Manipulation, with Application
to the Church-Rosser Theorem”. In: Indagationes Mathematicae (Pro-
ceedings) 75.5 (1972), pp. 381–392.

[BU07] Stefan Berghofer and Christian Urban. “A Head-to-Head Comparison
of de Bruijn Indices and Names”. In: Electronic Notes in Theoretical
Computer Science 174.5 (2007), pp. 53–67.

[Bur14] Stanley Burris. “George Boole”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Winter 2014. Metaphysics
Research Lab, Stanford University, 2014.

http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/POPLmark-deBruijn.shtml
http://isa-afp.org/entries/POPLmark-deBruijn.shtml

118 BIBLIOGRAPHY

[Cri12] Common Criteria. Common Criteria for Information Technology
Security Evaluation. 2012. Accessed 4 June 2017.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving.
2nd ed. Graduate Texts in Computer Science. Springer, 1996.

[Hal08] Thomas C. Hales. “Formal Proof”. In: Notices of the American Math-
ematical Society 55 (2008), pp. 1370–1380.

[Har08] John Harrison. “Formal Proof — Theory and Practice”. In: Notices
of the American Mathematical Society 55 (2008), pp. 1395–1406.

[Hea80] Percy John Heawood. “Map-Colour Theorem”. In: The Quarterly
Journal of Pure and Applied Mathematics 24 (1880), pp. 332–338.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science — Mod-
elling and Reasoning about Systems. 2nd ed. Cambridge University
Press, 2004.

[IsaFoL] IsaFoL: Isabelle Formalization of Logic. url: https://bitbucket.
org/isafol/isafol/ Accessed 30 June 2017.

[KHB16] Alexander Krauss, Brian Huffman, and Jasmin Blanchette. Theory
Countable. 2016. url: http://isabelle.in.tum.de/website-
Isabelle2016/dist/library/HOL/HOLCF/Countable.html Ac-
cessed 16 June 2017.

[Pla16] Jan von Plato. “The Development of Proof Theory”. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2016.
Metaphysics Research Lab, Stanford University, 2016.

[Sch17] Anders Schlichtkrull. Formalization of First-Order Unordered Reso-
lution. April 2017. url: https://bitbucket.org/isafol/isafol/
src/master/Unordered_Resolution/.

[Sel89] Jonathan P. Seldin. “Normalization and Excluded Middle. I”. In:
Studia Logica 48.2 (1989), pp. 193–217.

[Vil15] Jørgen Villadsen. “ProofJudge: Automated Proof Judging Tool for
Learning Mathematical Logic”. In: Exploring Teaching for Active
Learning in Engineering Education (ETALEE 2015). Copenhagen,
Denmark: IUPN - IngeniørUddannelsernes Pædagogiske Netværk,
2015, pp. 141–148.

[VJS17] Jørgen Villadsen, Alexander Birch Jensen, and Anders Schlichtkrull.
“NaDeA: A Natural Deduction Assistant with a Formalization in
Isabelle”. In: IfCoLog Journal of Logics and their Applications 4.1
(2017), pp. 55–82.

[Wen16a] Makarius Wenzel. Miscellaneous Isabelle/Isar examples. December
2016. url: https://isabelle.in.tum.de/dist/library/HOL/
HOL-Isar_Examples/document.pdf Accessed 19 June 2017.

https://bitbucket.org/isafol/isafol/
https://bitbucket.org/isafol/isafol/
http://isabelle.in.tum.de/website-Isabelle2016/dist/library/HOL/HOLCF/Countable.html
http://isabelle.in.tum.de/website-Isabelle2016/dist/library/HOL/HOLCF/Countable.html
https://bitbucket.org/isafol/isafol/src/master/Unordered_Resolution/
https://bitbucket.org/isafol/isafol/src/master/Unordered_Resolution/
https://isabelle.in.tum.de/dist/library/HOL/HOL-Isar_Examples/document.pdf
https://isabelle.in.tum.de/dist/library/HOL/HOL-Isar_Examples/document.pdf

BIBLIOGRAPHY 119

[Wen16b] Makarius Wenzel. The Isabelle/Isar Reference Manual. December
2016. url: http://isabelle.in.tum.de/doc/isar- ref.pdf
Accessed 19 June 2017.

[Wen99] Markus Wenzel. “Isar — A Generic Interpretative Approach to Read-
able Formal Proof Documents”. In: Theorem Proving in Higher Order
Logics, 12th International Conference (TPHOLs 1999), Proceedings.
Nice, France, September 1999, pp. 167–184.

[Zal17] Edward N. Zalta. “Gottlob Frege”. In: The Stanford Encyclopedia
of Philosophy. Ed. by Edward N. Zalta. Spring 2017. Metaphysics
Research Lab, Stanford University, 2017.

http://isabelle.in.tum.de/doc/isar-ref.pdf

	Summary
	Preface
	Contents
	1 Introduction
	1.1 Aim and Scope
	1.1.1 Logic
	1.1.2 First-Order Logic
	1.1.3 Proof Systems
	1.1.4 Formalization

	1.2 Contributions
	1.3 Overview

	2 Formalizations in Isabelle
	2.1 Numbers and Lists
	2.2 Proof Methods
	2.3 Quicksort
	2.3.1 Permutation
	2.3.2 Sorting

	3 Proofs in Natural Deduction
	3.1 Natural Deduction in a Textbook
	3.1.1 On Substitution
	3.1.2 Natural Deduction Rules

	3.2 Example Proofs
	3.2.1 Modus Tollens
	3.2.2 Socrates is Mortal

	4 Formalizing Syntax and Semantics
	4.1 Syntax
	4.1.1 Terms
	4.1.2 Formulas

	4.2 Semantics
	4.2.1 Terms
	4.2.2 Formulas

	5 Formalizing Natural Deduction
	5.1 Utilities
	5.1.1 New Constants
	5.1.2 Substitution

	5.2 Formalized Rules
	5.3 Example Proofs
	5.3.1 Reflexivity
	5.3.2 Modus Tollens
	5.3.3 Socrates is Mortal

	6 Formalizing Soundness
	6.1 Lemmas
	6.1.1 Built-In Logical Connectives
	6.1.2 Environment Extension
	6.1.3 New Constants
	6.1.4 Substitution

	6.2 Soundness
	6.2.1 A Consistency Corollary

	7 Outline of Completeness Proof
	7.1 The Big Picture
	7.2 Types of Formulas
	7.3 Consistency Properties
	7.3.1 Alternate Consistency Property
	7.3.2 Closure under Subsets
	7.3.3 Finite Character

	7.4 Maximal Consistent Sets
	7.4.1 Chains
	7.4.2 Extension

	7.5 Hintikka's Lemma
	7.5.1 Hintikka Sets
	7.5.2 Herbrand Models
	7.5.3 The Lemma

	7.6 Model Existence Theorem
	7.7 Completeness

	8 Formalizing Completeness
	8.1 Consistency Properties
	8.1.1 Alternate Consistency Property
	8.1.2 Closure under Subsets
	8.1.3 Finite Character

	8.2 Enumerating Data Types
	8.3 Maximal Consistent Sets
	8.3.1 Chains
	8.3.2 Extension
	8.3.3 Maximality

	8.4 Hintikka Sets
	8.4.1 Herbrand Terms
	8.4.2 The Lemma
	8.4.3 Maximal Extension is Hintikka

	8.5 Model Existence Theorem
	8.6 Inference Rule Consistency
	8.7 Completeness using Herbrand Terms
	8.8 Completeness in Countably Infinite Domains
	8.8.1 Bijective Semantics
	8.8.2 Completeness

	8.9 The Löwenheim-Skolem Theorem
	8.9.1 Satisfiable Sets are a Consistency Property
	8.9.2 Unused Parameters
	8.9.3 The Theorem

	9 On Open Formulas
	9.1 Assuming Nothing
	9.1.1 Strategy
	9.1.2 Substituting Constants
	9.1.3 Soundness
	9.1.4 Universal Closure
	9.1.5 Variables for Constants
	9.1.6 Obtaining Fresh Constants

	9.2 Implications and Assumptions
	9.2.1 Renaming Parameters
	9.2.2 Weakening Assumptions
	9.2.3 Completeness

	9.3 A Simpler Rule Subtle

	10 Conclusion
	10.1 Discussion
	10.2 Future Work

	Bibliography

