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Abstract

I formalize a Seligman-style tableau system for basic hybrid logic in the proof
assistant Isabelle/HOL. Unlike the original system, I name every block on the
tableau to avoid the risk of needing to backtrack when constructing a tableau.
The tableau rules are restricted to only allow extensions of the tableau that
include a new formula and I show via a strengthening lemma that this restriction
preserves completeness. Showing strengthening under this restriction requires
relaxing the Nom rule to allow the shared nominal to occur on any block, not
just the current one as originally done. The (3) rule is restricted to only apply
to unwitnessed 3-formulas and this restriction is lifted by proving a substitution
lemma for the calculus. General versions of the @-rules are derived from their
restricted counterparts using a structural lemma that allows weakening, factoring
and reordering at the level of blocks and a similar lemma that works inside the
current block. These lemmas show that forward referencing in the tableau is
admissible as long as it is acyclic. The GoTo rule is restricted using a notion
of coins where each application of GoTo requires spending a coin and coins are
earned through applications of the remaining rules. If a branch can be closed then
it can be closed starting from a single coin. This restriction of GoTo works better
with rule induction than the simpler scheme of disallowing two applications in
a row. I show that the Bridge rule is admissible using a set of indices into the
branch that satisfies a particular descendant relation. This set effectively guides
what formula occurrences should be modified when one accessibility formula is
replaced by another. Next, I apply an existing synthetic completeness proof
based on maximally consistent sets of blocks to show that the negation of any
valid formula has a closing tableau. Using this approach for the restricted system
is novel. Finally, in pursuit of a terminating system, I suggest a restriction of
the Nom rule based on tags that directly encodes the notion of copying in the
right direction and sketch a strategy for lifting this restriction.
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Chapter 1

Introduction

This thesis focuses on a proof system for basic hybrid logic [Bra17] and formalizes
that proof system in Isabelle/HOL [NPW02]. In the first half of this chapter
I introduce the overall ideas of hybrid logic and motivate the focus on it. In
the second half I will argue for the utility of a proof assistant like Isabelle/HOL
when working with a proof system and detail some of the benefits of formalizing
work like this.

1.1 Hybrid Logic

Logic is the study of reasoning and in this thesis especially the study of which
statements can be considered correct. Propositional logic treats statements as
simply true or false and allows us to build larger statements with connectives
like not, and, or, etc.

Modal logic takes this a step further and considers the truth value of a statement
relative to a specific point, like a possible world, a time, a location or something
similar. Thus a statement like “it rains” is not just considered true or false, but
possibly true at one point and false at another. Given a relation between points,
this extra generality makes modalities like possibly and necessarily meaningful:
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We can express that it “necessarily rains” if it rains at all points relative to the
considered one, for instance in all neighboring cities. Or we may consider the
transitions between states taken by a computer program and express that it is
“not possible to get stuck” if, regardless of the starting state, there is no reachable
state where the program cannot progress.

Hybrid logic arises with the idea of allowing statements that name these points
using so-called nominals instead of only making opaque references to them
through the modalities [Bra17]. As such we may form a statement like “it is
Christmas Eve and it is snowing” where “it is Christmas Eve” is a nominal
and “it is snowing” is a regular proposition. If we wish to insist on considering
something at a certain point we can use the satisfaction operator, at, and say
for instance that “at Christmas Eve, it is snowing” [Bra17]. Further additions
are possible but these are beyond the scope of this thesis.

There is a lot more to say about basic hybrid logic and especially its connection to
first-order logic, but let us instead focus on some applications. Blackburn points
out that, more so than standard modal logic, hybrid logic is well-suited for repre-
senting temporal logic which can be used for expressing properties about software
and hardware systems, enabling formal verification of their correctness [Bla00].
Another application of hybrid logic is representing feature logics [Bla00], a class
of logics for classifying and constraining feature structures that appear in both
linguistics, the theory of data structures and that of databases [Rou97]. Finally,
Blackburn points out that description logic, used in artificial intelligence, as
logical formalism for the Web Ontology Language for the semantic web and in
biomedical informatics [HGS07], can be seen as a hybrid logic [Bla00]. In a more
philosophical direction, Braüner uses hybrid logic to reason about false-belief
tasks with a proof system similar to the one considered in this thesis [Bra13].

1.2 Isabelle/HOL

This thesis contains a lot of definitions and proofs but definitions can be mis-
interpreted and proofs can be incorrect. To mitigate this, all the work, unless
otherwise noted, has been formalized in the proof assistant Isabelle/HOL.

Isabelle is a generic proof assistant and Isabelle/HOL is its instance based on
higher-order logic [NPW02]; I will use the two terms interchangeably. A proof
assistant like Isabelle provides the means to express mathematical statements
and proofs in a formal language that can be mechanically verified. In other
words, definitions become unambiguous and every step of a proof is checked to
ensure that it follows from the steps before it. In the case of Isabelle which uses
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the LCF architecture, this process works by compiling every statement down to
a minimal language of axioms and inference rules that is checked by a trusted
kernel [NPW02]. These axioms and inference rules belong to the meta-logic
whereas the formalized logic is known as the object logic. The artifact obtained
by working in a proof assistant is known as a formalization.

With a formalized proof system the computer can help us verify that any proof
within the system is correct, i.e. that rules are applied correctly, side conditions
are met and so on: We obtain a method of semi-automatic proof checking simply
through the specification. Moreover, we can now formally verify properties
about the proof system like soundness, completeness or the admissibility of a
particular rule. Readers of the formalization can focus on the definitions, lemma
statements and overall ideas, trusting that the proofs are correct since they have
been verified by the machine. And if the reader decides to delve into the proofs
they will find every case covered and every detail attended to, at least down to
a level where the automatic proof search of the proof assistant can take over.
In a formalized proof there are no exercises left for the reader, no cases that
should follow analogously to others but turn out not to and no proofs have been
omitted because they are deemed trivial. This means that formalizing a proof is
a significant effort but increases the trust we can put in the result. The level of
detail also means that studying a formalization can be very educational. For
readability, most of the lemmas in this thesis have been written in standard
mathematical syntax.

1.3 Archive of Formal Proofs

The full formalization is available in the Archive of Formal Proofs which collects
refereed submissions and keeps them up to date with the current Isabelle version:

https://www.isa-afp.org/entries/Hybrid_Logic.html

The latest version of the formalization (4820 lines) is available at the development
site where compatibility is only guaranteed for a repository or snapshot version
of Isabelle so it may not work on the latest stable version:

https://devel.isa-afp.org/browser_info/current/AFP/Hybrid_Logic/index.html

The page above includes four links. The first, theory_dependencies, shows the
transitive dependencies of the theory. The second, document, links to a PDF

https://www.isa-afp.org/entries/Hybrid_Logic.html
https://devel.isa-afp.org/browser_info/current/AFP/Hybrid_Logic/index.html
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obtained by rendering the Isabelle proofs in LATEX (100+ pages). The third,
outline, is an abridged version of the full document that only includes lemma
statements, not proofs. Finally, Hybrid_Logic links to the full formalization
rendered in the browser with syntax highlighting.

1.4 Chapter Overview

In Chapter 2 I formalize the syntax and semantics of basic hybrid logic. In
Chapter 3 I introduce the tableau system considered in the rest of the thesis
along with a number of restrictions imposed to rule out sources of nontermination.
Chapter 4 proves a number of results about the system, including strengthening,
substitution and a structural property, and uses these to lift the termination
restrictions. Working with the unrestricted rules, Chapter 5 shows that the
Bridge rule is admissible using the notion of a descendant relation on a set of
indices into a tableau branch. In Chapter 6 I formalize the completeness of the
proof system using the synthetic approach by Jørgensen et al. [JBBB16]. Finally
Chapter 7 concludes the thesis by sketching a possible restriction on the so-called
Nom rule and by pointing at related and future work.



Chapter 2

Syntax and Semantics

In this chapter I introduce the syntax and semantics of basic hybrid logic and
show how it can be formalized in Isabelle. I choose a deep embedding of the logic
where the syntax is represented as a datatype in the meta-logic and the semantics
is modeled as a function on this datatype. As Wildmoser and Nipkow point out,
this requires more work up front than a shallow embedding where object-logic
formulas are translated directly into the meta-logic. For instance, with the deep
embedding we are required to write explicit substitution functions [WN04]. In
return, the deep embedding allows us to prove theorems by induction over the
structure of formulas and this will be useful for formalizing the completeness
theorem by Jørgensen et al. [JBBB16].

2.1 Syntax

The syntax is parameterized over two universes, one of propositional symbols
and one of nominals. Propositional symbols occur rarely and I write them as
x. The more frequent nominals are written a, b, c, i, j or k. The well-formed
formulas are given by the following grammar:
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φ, ψ ::= x | i | ¬φ | φ ∨ ψ | 3φ | @iφ

A formula ¬φ is read as not φ, ∨ is meant to symbolize the connective or and 3

is the modality possibly. The satisfaction operator is now written @ and formulas
of the form @iφ are called satisfaction statements.

The datatype in Figure 2.1 encodes the syntax in Isabelle. It is parameterized
over two types represented by the type variables ’a and ’b. The first stands for
propositional symbols and the second for nominals. The parameterization gives
us the freedom to use whatever types we want for these symbols and also to only
assume an infinite universe of nominals when necessary. The default syntax is
given by the constructors, Pro, Nom, etc. but infix syntax can be specified to the
right in parentheses. This allows us to use our usual syntax to write formulas in
the proof assistant, albeit in bold to not conflict with the built-in syntax. Note
that I will use p, q etc. for formulas in Isabelle since they are easier to type than
φ and ψ.

datatype ( ′a, ′b) fm
= Pro ′a
| Nom ′b
| Neg 〈( ′a, ′b) fm〉 (〈¬ -〉 [40 ] 40 )
| Dis 〈( ′a, ′b) fm〉 〈( ′a, ′b) fm〉 (infixr 〈∨〉 30 )
| Dia 〈( ′a, ′b) fm〉 (〈3 -〉 10 )
| Sat ′b 〈( ′a, ′b) fm〉 (〈@ - -〉 10 )

Figure 2.1: Hybrid logic syntax as a datatype in Isabelle/HOL.

2.2 Semantics

The language is interpreted on models consisting of a frame (W,R) and a valuation
of propositional symbols V . The first part of the frame, W , is a non-empty set of
points/worlds and the second part, R, is an accessibility relation between them.
Models are represented as concrete datatypes in the formalization:

datatype ( ′w , ′a) model = Model (R: 〈 ′w ⇒ ′w set〉) (V : 〈 ′w ⇒ ′a ⇒ bool 〉)

In the above, I use the type variable ’w to represent W , making use of the
fact that types in HOL are non-empty. The accessibility relation, R, is then a
function from a world to a set of reachable worlds and the valuation, V, is a
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predicate on a world and a propositional symbol. Given a model M, we can write
R M and V M to access the reachability relation and valuation, respectively.

An assignment g for a model whose worlds are W is a function from a nominal
to an element of W . That is, the assignment tells us which semantic world each
syntactic nominal denotes. For brevity I will sometimes describe nominals as
worlds, implicitly referring to the output of some assignment.

Figure 2.2 gives the basic hybrid logic semantics as a HOL predicate. The first
three lines give the name, type signature and infix syntax of the predicate. As
evident by the type signature it takes four arguments: A model, an assignment,
a world and a formula, where each argument lines up type-wise with the rest.

primrec semantics
:: 〈( ′w , ′a) model ⇒ ( ′b ⇒ ′w) ⇒ ′w ⇒ ( ′a, ′b) fm ⇒ bool 〉
(〈-, -, - |= -〉 [50 , 50 , 50 ] 50 ) where
〈(M , -, w |= Pro x ) = V M w x 〉

| 〈(-, g , w |= Nom i) = (w = g i)〉
| 〈(M , g , w |= ¬ p) = (¬ M , g , w |= p)〉
| 〈(M , g , w |= (p ∨ q)) = ((M , g , w |= p) ∨ (M , g , w |= q))〉
| 〈(M , g , w |= 3 p) = (∃ v ∈ R M w . M , g , v |= p)〉
| 〈(M , g , - |= @ i p) = (M , g , g i |= p)〉

Figure 2.2: Semantics of hybrid logic as a predicate in Isabelle/HOL.

The following six lines list each of the cases for the structure of a formula. Three
cases are worth mentioning: nominals, diamonds and satisfaction statements.
First, a nominal i is only true in the world it denotes. Second, 3φ is true at
world w if there exists a world v reachable from w that models φ. Finally, a
satisfaction statement, @iφ, shifts perspective, causing the truth of φ to be
determined at the world denoted by i.

A formula is valid if it is true in all models, assignments and worlds and satisfiable
if there exists some combination of the three in which it is true.
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Chapter 3

Proof System

We are interested in a syntactic means of showing the validity of hybrid logic
formulas. Blackburn et al. provide exactly such a means with their Seligman-style
tableau calculus ST [BBBJ17]. In this chapter I introduce a variant of ST along
with termination restrictions equivalent to their restrictions R1-R5.

Blackburn et al. give an example of nontermination due to the Nom rule which
they resolve by splitting it into three parts [BBBJ17]. The example applies to the
presented system as well. Instead of splitting the rule, I propose in Section 7.1
on page 55 a restriction on the applicability of Nom. There, I also sketch a proof
of why the restriction preserves completeness but work on this restriction is not
yet formalized and so it is not considered until that chapter.

3.1 Rules

Since ST is a tableau system, we typically start from the negation of the formula
we want to prove and apply rules to break down the formula into smaller formulas
that follow from it, in search of a contradiction on all branches.



10 Proof System

The rules are based on a subdivision of the
branches of the tableau into blocks. Each pair of
blocks is separated by a horizontal line and the
first formula on each block is a nominal dubbed
the opening nominal. The intuition is that the
formulas on a block are true in the world de-
noted by its opening nominal. We may view a
block as a macro that expands into a number
of satisfaction statements as illustrated in Fig-
ure 3.1. Where satisfaction statements encode
global knowledge, the blocks allow a local per-
spective where we work within one world at a
time and then explicitly switch to another one.
The opening nominal plays a special role in the
system, but is still just a formula and may par-
ticipate in rules like any other. If Θ is a branch
and φ occurs on an i-block in Θ then I say that
φ occurs at i in Θ. I occasionally refer to the
opening nominal of a block as its name or type.

...
...

i
φ1 @iφ1

φ2 @iφ2

...  
...

j
ψ1 @jψ1

...
...

...
...

Figure 3.1:
Blocks as macros.

The propositional rules given in Figure 3.2 are standard but now work within
the blocks. The input to the rule is given above the vertical line and the output
below it. Unlike Blackburn et al. I explicitly write the opening nominals in
the rules, while still suppressing the rest of the formulas on the block. If the
opening nominals match then the output block may be the same as an input
block. Consider the (¬¬) rule: If ¬¬φ occurs on an a-block and the current
block is an a-block, then φ is a legal extension of the branch.

a
φ ∨ ψ
a

/ \
φ ψ

(∨)

a
¬(φ ∨ ψ)

a
|
¬φ
¬ψ

(¬∨)

a
¬¬φ
a
|
φ

(¬¬)

Figure 3.2: Propositional rules.

The remaining rules are given in figure 3.3 on the next page. The first row
contains the rules for the hybrid logic connectives and the second row contains
rules for working with the blocks. Consider the (¬3) rule: If from world a we
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cannot reach a world where φ is satisfied (¬3φ), but we can reach world i (3i),
then it is safe to conclude that φ does not hold at i (¬@iφ). The notation makes
it explicit that the two premises may belong to separate blocks and that these
can appear in any order on the branch.

a
3φ

a
|
3i

@iφ

(3)1

a a
¬3φ 3i

a
|

¬@iφ

(¬3)

b
@aφ

a
|
φ

(@)

b
¬@aφ

a
|
¬φ

(¬@)

|
i

GoTo2

b b a
i φ i

a
|
φ

Nom

i i
φ ¬φ

×
Closing

1 i is fresh, φ is not a nominal.
2 i is not fresh.

Figure 3.3: Hybrid rules.

The GoTo rule allows us to open a new block whose opening nominal already
occurs somewhere on the branch, either on its own or within a formula.

The Nom rule allows us to copy formulas between blocks that denote the same
world, as evidenced by the same nominal occurring on blocks of both types. Note
that nominal i may itself be either a or b.

A branch closes if the same formula occurs on the same type of block both
positively and negatively. Otherwise, if the branch is exhausted but does not
close it is called open. A tableau is closed if all its branches are closed and open
if one of its branches is. If a closed tableau can be obtained starting from the
branch Θ then I write ` Θ. In the vocabulary of Jørgensen et al. the blocks of Θ
can be thought of as the root blocks [JBBB16]. Later, it will be useful to have
an inline syntax for branch extensions. If Θ is a branch and the current block
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has opening nominal a, then I write the branch obtained by extending Θ with φ
as φ−a Θ. The hyphen is meant to resemble the vertical rule in the figures.

When constructing a tableau it is useful to consider the rules from top to bottom
as descriptions of what extensions are legal in the search for a contradiction.
However, when proving properties of the system using rule induction, it will be
helpful to view them the other way around: As descriptions of when we can
remove a formula from a branch and still know that it can be closed.

3.1.1 A way home

The original system ST allows for the first block to be unnamed but includes a
Name rule for introducing a fresh nominal to be treated as the opening nominal.
Since I require every block to be named by construction, I omit this rule.

The unnamed block is neat when we want to prove a purely propositional formula
where hybrid reasoning is unnecessary, but it comes at the cost of having to
backtrack if we forgot to name the initial block and subsequently apply the
wrong rule. Consider the formula ¬(i ∨¬i) which has a closing tableau obtained
by applying the (¬∨) rule. However, as seen in figure 3.4a, if we erroneously
start off with a GoTo then we lose the ability to finish the tableau: We get stuck
on a branch that is neither saturated nor closes. Figure 3.4b illustrates how the
present system ensures that we can return to the world we started in.

1. ¬(i ∨ ¬i)
2. i GoTo

(a) Original system.

1. a
2. ¬(i ∨ ¬i)
3. i GoTo

4. a GoTo
5. ¬i (¬∨) 2
6. ¬¬i (¬∨) 2

×
(b) Present system.

Figure 3.4: Taking a wrong turn.

The possibility of getting stuck also matters when we start from more than a
single formula on a single block. We would like to know that if a closing tableau
exists for a set of blocks then it also exists for any superset, but if one of the
blocks is unnamed then, as just illustrated, this may no longer be the case. We
might assume for this lemma that all blocks are named but then we have to
carry this assumption transitively, making the formalization more cumbersome.
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3.2 Termination Restrictions

Blackburn et al. outline five restrictions imposed on the rules that along with a
different Nom rule give a terminating system [BBBJ17]. They are as follows:

R1 A formula is never added to an i-block if it already occurs on an i-block on
the same branch.

R2 The (3) rule cannot be applied twice to the same formula occurrence.

R3 The Name rule is only ever applied as the very first rule in a tableau.

R4 The GoTo rule cannot be applied twice in a row.

R5 (@) and (¬@) can only be applied to premises i and @iφ (¬@iφ) when the
current block is an i-block.

For R1 and R2 I will give alternative formulations suitable for formalization and
show that the unrestricted versions of the rules can be proved within the system.
Restriction R3 does not apply to the present system. In Section 3.3 on page 16 I
will show why R4 as stated makes some properties difficult to prove by standard
rule induction and give a different termination restriction that is easier to work
with. In Section 4.1 on page 25 I show that the reformulation is also easier to
address. Restriction R5 is already incorporated structurally in the presented
@-rules and I will show how to obtain the general versions.

3.2.1 Reformulations

I will say that φ is new to a in Θ if φ does not occur at a in Θ.

Now consider the original R1 restriction as it applies to the (¬∨) rule on input
¬(φ ∨ ψ). If ¬φ is not new to the block type, does that mean that the branch is
only extended with ¬ψ? If this is the case, can we apply the rule repeatedly with
the same input but extend the branch at most once? Clearly not, as then we
would not have a terminating system. And outlawing the rule entirely because
half of the extension is not new would be a problem for completeness. The
following reformulation aims to avoid this confusion:

R1 The output of a rule must include a formula new to the current block type.
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Consider for instance (∨): Both subformulas must be new, since they are
independently output on the branch, but for something like (¬∨) just one of
them needs to be. This still prevents repeatedly applying either rule.

Restriction R2 serves the same purpose as R1 but cannot be formulated in the
same way since the output includes the fresh nominal i and as such will always be
new. Still, we would like to reformulate the rule to appeal only to the contents of
the branch, which we already keep track of in the formalization, not any previous
rule applications. One possibility, indeed the chosen one, is the following:

R2 The (3) rule can only be applied to input 3φ on an a-block if 3φ is not
already witnessed at a.

Here, 3φ is witnessed at a in Θ if for some witnessing nominal i, both 3i and
@iφ occur at a in Θ. If a diamond is already witnessed, we do not need to
witness it again with a fresh nominal. This is proven in Section 4.3 on page 31.

3.2.2 Satisfaction statements

As noted, the (@) and (¬@) rules in figure 3.3 on page 11 are already R5-
restricted structurally as this makes rule induction simpler. The unrestricted
rules as presented by Blackburn et al. [BBBJ17] can be seen in figure 3.5. I will
show how to prove these in Section 4.4 on page 34.

b a
@iφ i

a
|
φ

(@)

b a
¬@iφ i

a
|
¬φ

(¬@)

Figure 3.5: Unrestricted (@) and (¬@) rules.

3.2.3 The Nom rule

The original Nom rule requires the shared nominal i to occur on the current block
and not just any block with the same opening nominal [JBBB16]. Combined
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with R1 and R5 this has the curious effect of causing incompleteness if we use
the derived rule (¬ →). Consider the tableau in figure 3.6. Every step of the
tableau is the only one that causes progress; our hand is forced by the formula.
When we reach line 16 we have φ on an i-block, ¬φ on a j-block and i and j
on each others type of block. Semantically, there is clearly a contradiction. But
exactly because we were forced by the (¬ →) rule to add j and i to the second
and third block respectively, and by R5 to open new blocks afterwards, we are
now prevented from closing the branch. We cannot copy φ to the current block
because it does not share any nominals with the i-block. And due to R1 the
current block cannot be made to do so, since i occurs on a j-block at line 9.

With the present, relaxed Nom rule, we are allowed to copy φ since the shared
nominal does not have to occur on the current block. As we shall see in Section 4.2
on page 28, this relaxation of the rule will also make it possible to lift the R1
restriction via strengthening. Note that without termination restrictions the
relaxed rule can be derived from two applications of the original.

1. a
2. ¬@i(j → @j(i→ @i(φ→ @jφ)))

3. i GoTo
4. ¬(j → @j(i→ @i(φ→ @jφ))) (¬@) 2, 3
5. j (¬ →) 4
6. ¬@j(i→ @i(φ→ @jφ)) (¬ →) 4

7. j GoTo
8. ¬(i→ @i(φ→ @jφ)) (¬@) 6, 7
9. i (¬ →) 8
10. ¬@i(φ→ @jφ) (¬ →) 8

11. i GoTo
12. ¬(φ→ @jφ) (¬@) 10, 11
13. φ (¬ →) 12
14. ¬@jφ (¬ →) 12

15. j GoTo
16. ¬φ (¬@) 14, 15

Figure 3.6: Getting stuck with R1+R5 and (¬ →).

Omitting the R1 restriction would make us able to close the branch with the
original Nom rule, but, as Figure 3.7 shows, so would unfolding the abbreviation
φ → ψ ≡ ¬φ ∨ ψ. The (¬∨) rule negates its extension, so lines 5 and 9 now
contain ¬¬j and ¬¬i instead of j and i. In a sense, the double negations delay
the knowledge that the two nominals denote the same world and this allows us
to wait until the last moment to reveal this information, making Nom applicable.
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1. a
2. ¬@i(¬j ∨@j(¬i ∨@i(¬φ ∨@jφ)))

3. i GoTo
4. ¬(¬j ∨@j(¬i ∨@i(¬φ ∨@jφ))) (¬@) 2, 3
5. ¬¬j (¬∨) 4
6. ¬@j(¬i ∨@i(¬φ ∨@jφ)) (¬∨) 4

7. j GoTo
8. ¬(¬i ∨@i(¬φ ∨@jφ)) (¬@) 6, 7
9. ¬¬i (¬∨) 8
10. ¬@i(¬φ ∨@jφ) (¬∨) 8

11. i GoTo
12. ¬(¬φ ∨@jφ) (¬@) 10, 11
13. ¬¬φ (¬∨) 12
14. ¬@jφ (¬∨) 12

15. j GoTo
16. ¬φ (¬@) 14, 15
17. i (¬¬) 9
18. ¬¬φ Nom 11, 13, 17

×
Figure 3.7: Being saved from R1 by double negations.

3.3 Restricted GoTo Considered Harmful

The subdivision of a branch into blocks corresponding to different nominals
provides us with a local perspective where we can focus on one type of block at
a time. It also means that perspective shifts become explicit through the GoTo
rule and imposing restrictions on it has a significant impact on the proof system.

3.3.1 Ramifications

The R4 restriction as stated reintroduces the ability to take a wrong turn in
the construction of a tableau and get stuck as a result. This is illustrated in
Figure 3.8 on the facing page which also shows that if we ignore R1 we can play
a cheap trick with the Nom rule to make progress.

Let us ignore this issue for now and focus on another consequence: We may not
be able to close a modified branch by simply following the rule applications from
the original one. Consider the property of weakening a branch with an extra
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1. a
2. ¬(i ∨ ¬i)
3. i GoTo

(a) Need to backtrack.

1. a
2. ¬(i ∨ ¬i)
3. i GoTo
4. i Nom 3

5. a GoTo
...

×
(b) Saved by Nom.

Figure 3.8: Taking a wrong turn again.

formula on some block and still being able to close it. Figure 3.9 illustrates how
legal extensions of a branch become scarce resources under R1 and R4. On the
left, we could use the (¬¬) rule on line 4 to justify the following GoTo. But after
the weakening, φ is no longer new to a, so the (¬¬) rule is not justified and by
extension, neither is the GoTo. On the weakened branch, opening the second
a-block is a mistake, so under R4, weakening requires possibly rewriting the rest
of the branch to avoid detours. Note that if φ was the only legal extension at
that point then there is no way to recover from this mistake besides backtracking
which complicates rule induction.

1. a
2. ¬¬φ

...

3. a GoTo
4. φ (¬¬) 2

5. i GoTo

 

1. a
2. ¬¬φ
3. φ

...

4. a GoTo
5. φ (¬¬) 2

6. i GoTo

Figure 3.9: Unjustified GoTo after weakening.

Renaming the nominals on a branch may collapse formulas and thus invalidate
rule applications in a similar way, causing the same issue. Instead of coupling the
elimination of detours with each of these properties, we would like a terminating
restriction on GoTo that works with the standard induction rule provided by
Isabelle and can be dealt with separately.
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3.3.2 Unique blocks

Consider first a radical alternative. The GoTo rule gives us the desirable property
that the content of a branch never changes but is only extended with new blocks
and formulas. This is an advantage for the branching (∨) rule since it allows us
to work on the two branches separately without any risk of interference between
them. However, if we were willing to give up that property we could obtain a
system with a much simpler GoTo rule: You are only allowed to open a new
i-block if there is no i-block already. This formulation of the rule is terminating
if we assume that only a finite number of nominals can be generated on a branch
(which the remaining restrictions seek to guarantee).

For the rest of the rules, we would drop the notion of a current block and instead
fill in whatever existing block matches the rule we are applying. Figure 3.10
illustrates how such a tableau might look like a table, and how it could still be
viewed as a macro that expands into a labeled system.

i j k · · ·
φ1 ψ1 ρ1

φ2 ψ2 ρ2

ψ3

...
...

...

 

@iφ1

@iφ2

...
@jψ1

@jψ2

@jψ3

...
@kρ1

@kρ2

...

Figure 3.10: At most one block per nominal.

The main disadvantage of this system, as mentioned, is that whenever we apply
a branching rule we have to copy the entire table to both branches to avoid
interference between them. However, this is more of a problem when drawing it
on paper than if implemented on a computer. A different critique is that without
the explicit perspective shift, this is nothing more than different notation for a
labeled system.
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3.3.3 Making progress

Instead, consider again the need to impose a restriction on GoTo. Without some
form of restriction, we could create an infinite branch by repeatedly applying it.
In, say, an internalised labeled system, every rule contains its own perspective
shift since we can work on @i-prefixed formulas one moment and @j-prefixed
formulas the next without an explicit rule application in-between: The GoTo
rule is coupled with every other rule. This coupling provides an important
property for termination: Every perspective change also makes progress. There
is no rule to extend the branch with an empty satisfaction statement like GoTo
adds an empty block. Blackburn et al. make a similar remark when relating
the restrictions to restrictions on a labeled deduction system [BBBJ17]. And
notably, Bolander and Blackburn show that you can get a terminating system
for the labeled system without introducing the ability to get stuck [BB07].

3.3.4 Money in the bank

I will use the notion of having money in the bank to obtain a similar coupling
between applications of GoTo and the rest of the rules. Every regular rule
application adds one coin to our savings and we pay for every GoTo with one coin.
Additionally, we are allowed to start with some number of coins in the bank.
Intuitively, this restriction prevents an infinite number of GoTos in a row since
our savings at any point in time are finite and decrease with each application.

The initial saving is what makes properties like weakening and substitution easier
to prove without pruning detours. In case a rule application is invalidated on the
modified branch, causing two GoTos in a row, we can justify this by assuming a
larger initial saving and spending some of that. A closed branch is still finite,
so the required initial saving is too. We can then show separately, as it is done
in Section 4.1 on page 25, that if a branch can be closed then it can be closed
starting from just a single coin. Note that there are example formulas, like
@i(φ ∨ ¬φ), where an initial coin is required to close the branch since it must
start with a GoTo. The reformulated R4 restriction becomes:

R4 The GoTo rule consumes one coin from the bank. (The remaining rules add
one coin.)

If we want to, taking a wrong turn can be resolved by “borrowing money” from
the bank. If a branch Θ can be closed starting from n coins I write n ` Θ. If n
is unknown or irrelevant, I typically write ` Θ.
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3.4 Formalization

The formalization is based on lists which are ordered sequences. Formally a
block is a list of formulas paired with an opening nominal and a branch is a list
of blocks. A formula is on a block if it is either contained in the list of formulas
or equals the opening nominal.

Figure 3.12 on page 22 shows the definition of ST in Isabelle as a set of inductively
defined rules. The premises of the rules are separated by the meta-implication,
=⇒, with the conclusion at the end. The # symbol separates the head and tail
of a list and the constructor Suc adds one to a natural number.

It is instructive to look at a verified tableau that uses these rules; Figure 3.11
proves the validity of @ii. For exposition I have divided the proof into four
sections delimited by empty lines.

lemma
fixes i
defines 〈p ≡ ¬ (@ i (Nom i))〉
shows 〈Suc n ` [([p], a)]〉

proof −

have 〈i ∈ branch-nominals [([p], a)]〉
unfolding p-def branch-nominals-def by simp

then have ?thesis if 〈n ` [([], i), ([p], a)]〉
using that GoTo by fast

moreover have 〈new (¬ Nom i) i [([], i), ([p], a)]〉
unfolding p-def new-def by auto

moreover have 〈(¬ (@ i (Nom i))) at a in [([], i), ([p], a)]〉
unfolding p-def by fastforce

ultimately have ?thesis if 〈Suc n ` [([¬ Nom i ], i), ([p], a)]〉
using that SatN by fast

then show ?thesis
by (meson Close list .set-intros(1 ) on.simps)

qed

Figure 3.11: Closing tableau for the formula @ii verified in Isabelle/HOL.

The first section begins the proof by defining an abbreviation for the root formula
and stating the goal of the lemma after shows. Note from the Suc that we are
assuming at least one coin to spend on a GoTo. The hyphen after proof means
that we are doing a direct proof, as opposed to, say, an induction proof.
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The first two lines of the second section prove the premise of the GoTo rule: That
i already occurs on the branch. The term after have is the local goal and the
commands on the following line are the justification. The next two lines prove
that if the branch extended with an empty i-block can be closed (using one less
coin) then so can the original branch. Here, ?thesis is an abbreviation for the
goal of the lemma as defined in the first section. The command then is used
to make the previously shown fact about i available to the justification of the
second have. And using does the same for named facts like the GoTo rule.

The third section first proves the two premises of the (¬@) rule: That the output
is new and that the input occurs on the branch. These facts are chained together
with the one above using the moreover command so that the three of them
together are available on lines 5 and 6 due to ultimately. Thus, we see that ¬i
is a legal extension of the branch.

Finally, the fourth and last section shows the thesis using the closing condition,
Close, and terminates the lemma with the qed command.

3.4.1 Soundness

The formalized soundness proof follows the one by Blackburn et al. [BBBJ17].
Since all blocks in the present system are named by an opening nominal, I can
use a stricter definition of block satisfiability that does not existentially quantify
over a world.

Definition 3.1 (Satisfiability) Let M be a model and g an assignment.
A block B with opening nominal i is satisfied by M and g, written M, g |=B B,
if for all φ on B, M, g, g(i) |= φ. A branch Θ is satisfied by M and g, written
M, g |=Θ Θ if it is satisfied block-wise, that is for all blocks B in Θ, M, g |=B B.

If a branch is closeable then it is not satisfied by any model and assignment.

Lemma 3.2 (Branch Unsatisfiability) If ` Θ then for all models M
and assignments g, M, g 6|=Θ Θ.

Proof. By rule induction for an arbitrary assignment. In each case we assume
Θ to be satisfied by an arbitrary M and g and derive a contradiction.

Closing If the branch closes directly then we have both φ and ¬φ at i in Θ for
some φ and i. But since Θ is satisfied by M and g, we then have M, g, g(i) |= φ
and M, g, g(i) |= ¬φ which is a contradiction.
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inductive ST :: 〈nat ⇒ ( ′a, ′b) branch ⇒ bool 〉 (〈- ` -〉 [50 , 50 ] 50 ) where
Close: 〈p at i in branch =⇒ (¬ p) at i in branch =⇒ n ` branch〉

| Neg :
〈(¬ ¬ p) at a in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒
Suc n ` (p # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| DisP :
〈(p ∨ q) at a in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒ new q a ((ps, a) # branch) =⇒
Suc n ` (p # ps, a) # branch =⇒ Suc n ` (q # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| DisN :
〈(¬ (p ∨ q)) at a in (ps, a) # branch =⇒
new (¬ p) a ((ps, a) # branch) ∨ new (¬ q) a ((ps, a) # branch) =⇒
Suc n ` ((¬ q) # (¬ p) # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| DiaP :
〈(3 p) at a in (ps, a) # branch =⇒
i /∈ branch-nominals ((ps, a) # branch) =⇒
@ a. p = Nom a =⇒ ¬ witnessed p a ((ps, a) # branch) =⇒
Suc n ` ((@ i p) # (3 Nom i) # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| DiaN :
〈(¬ (3 p)) at a in (ps, a) # branch =⇒
(3 Nom i) at a in (ps, a) # branch =⇒
new (¬ (@ i p)) a ((ps, a) # branch) =⇒
Suc n ` ((¬ (@ i p)) # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| SatP :
〈(@ a p) at b in (ps, a) # branch =⇒
new p a ((ps, a) # branch) =⇒
Suc n ` (p # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| SatN :
〈(¬ (@ a p)) at b in (ps, a) # branch =⇒
new (¬ p) a ((ps, a) # branch) =⇒
Suc n ` ((¬ p) # ps, a) # branch =⇒
n ` (ps, a) # branch〉

| GoTo:
〈i ∈ branch-nominals branch =⇒
n ` ([], i) # branch =⇒
Suc n ` branch〉

| Nom:
〈p at b in (ps, a) # branch =⇒ Nom i at b in (ps, a) # branch =⇒
Nom i at a in (ps, a) # branch =⇒ new p a ((ps, a) # branch) =⇒
Suc n ` (p # ps, a) # branch =⇒
n ` (ps, a) # branch〉

Figure 3.12: Definition of ST in Isabelle/HOL.
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Case (¬¬) By assumption we have ¬¬φ at a in Θ which is satisfied by M and
g, so M, g, g(a) |= ¬¬φ, so M, g, g(a) |= φ. The current block is an a-block so
M, g |=Θ φ−a Θ and this contradicts the induction hypothesis.

Case (3) We have 3φ at a in Θ, so M, g, g(a) |= 3φ. Let v be the world
accessible from g(a) s.t. M, g, v |= φ. By the induction hypothesis, i is fresh in Θ,
so we haveM, g(i := v), v |= φ where g(i := v) is the assignment that maps i to v
and every other nominal j to g(j). That means we knowM, g(i := v), g(a) |= @iφ.
Moreover, since v is accessible from g(a), we have M, g(i := v), g(a) |= 3i. In
combination, Θ extended by @iφ and 3i is satisfied by M and g(i := v):
M, g(i := v) |=Θ @ip−a 3i−a Θ. This contradicts the induction hypothesis.

The remaining cases are similar to (¬¬). �

Corollary 3.3 (Formula Unsatisfiability) If ` Θ then for any M ,
g and w, there is a φ on a block in Θ such that M, g,w 6|= φ.

Proof. Assume that for a given M and g no such φ exists, then Θ is satisfied
by M and g which contradicts Lemma 3.2 on page 21.

Theorem 3.4 (Soundness) If ` Θ where Θ consists of just ¬φ on an
i-block and i does not occur in φ, then φ is valid.

Proof. Fix an arbitrary model M , assignment g and world w. There are
only two formulas on Θ so by Corollary 3.3, for any g′ either M, g′, w 6|= ¬φ or
M, g′, w 6|= i. That is, either M, g′, w |= φ or M, g′, w 6|= i.

That means thatM, g′, g′(i) |= φ, sinceM, g′, g′(i) |= i by definition. In particular
M, g(i := w), (g(i := w))(i) |= φ since g′ was arbitrary. This reduces to
M, g(i := w), w |= φ and since i is assumed fresh we can drop its reassignment
and show M, g,w |= φ. Since M , g and w were chosen arbitrarily, this proves
the validity of φ. �
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Chapter 4

Lifting Restrictions

The synthetic completeness proof by Jørgensen et al. was made for the unre-
stricted version of ST [JBBB16]. Before formalizing the completeness result it
will therefore be useful to show that the restricted rules presented in the former
chapter do not affect which branches can be closed. In fact for restrictions R1,
R2 and R5 we can show the unrestricted versions of the rules to be admissible,
which I will do in this chapter. First however, I will show that one initial coin
suffices to close any closeable branch.

4.1 No Detours

The proof technique will be as follows: Given a branch that can be closed by
some number of rule applications we are going to cut it in half. The blocks
above the cut are untouched while below the cut we will filter away empty blocks,
i.e. detours. All extensions are made below the cut and I will show that the cut
branch can be closed starting from a single coin. In the end, we can choose to
cut the branch so that all root blocks are preserved, that is, only detours in the
extension are filtered away, and thus obtain our result.

I will use comma liberally to denote the extension of a branch Θ with a block B,
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as in ` B,Θ, or to append two branches, as in ` Θ,Θ′. Given a branch Θ I am
going to write bΘc for Θ with all empty blocks removed, where an empty block
consists only of its opening nominal. First, a remark and a technical lemma.

Remark 4.1 (More coins) If n ` Θ then n+m ` Θ.

Lemma 4.2 (Filter block extension) Let B be a block whose opening
nominal occurs in bΘlc ,Θr. Including B in the filtered section of the branch
may require assuming another initial coin. That is, if n ` B, bΘlc ,Θr then
n+ 1 ` bB,Θlc ,Θr.

Proof. There are two cases. If B is empty, we need to apply GoTo to go from
n ` B, bΘlc ,Θr to n + 1 ` bΘlc ,Θr since bB,Θlc = bΘlc. If B is nonempty,
bB,Θlc = B, bΘlc and the case follows from Remark 4.1. �

We are now in a position to prove the main lemma which is more general than
we need so it can be proved by induction.

Lemma 4.3 (Filtering detours) If a branch can be closed starting from
n coins, then any filtering cut of the branch can be closed from m+ 1 coins. That
is, if n ` Θl,Θr then m+ 1 ` bΘlc ,Θr.

Proof. Proof by induction over the construction of the closing tableau, for
arbitrary Θl,Θr.

Closing By assumption we have φ and ¬φ at i in Θl,Θr and since filtering
only removes empty blocks, we still have them in bΘlc ,Θr. If φ = k for some
nominal k then the filtering may remove a block whose opening nominal is k,
but if that was our given assumption then i = k and so i occurs on the same
block as ¬φ which is preserved by definition.

Case (¬¬) We have ¬¬φ at a in Θl,Θr and φ new to a. There are two cases.

If Θl is empty then we have m+ 1 ` φ−a Θr by the induction hypothesis, By
(¬¬) we know m ` Θr and so by Remark 4.1 we have m+ 1 ` Θr which is what
needs to be shown.

If Θl is nonempty, then split it into the current block B and the rest Θ′l. The
induction hypothesis tells us that m + 1 ` bφ−a B,Θ′lc ,Θr. The extension
makes the current block nonempty, so this reduces to m+ 1 ` φ−a B, bΘ′lc ,Θr.
The a-block with ¬¬φ is preserved by the filtering and so is the newness of φ
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so by (¬¬) we have m ` B, bΘ′lc ,Θr. And now from Lemma 4.2 on the facing
page we have m+ 1 ` bB,Θ′lc ,Θr ≡ m+ 1 ` bΘlc ,Θr which is the thesis.

Note that filtering cannot witness an unwitnessed a diamond, so except for GoTo,
the rest of the cases follow similarly.

GoTo The induction hypothesis gives us m+1 ` bB,Θlc ,Θr where B is empty.
This reduces to what needs to be shown: m+ 1 ` bΘlc ,Θr. �

Theorem 4.4 (Positive coins) If n ` Θ then m+ 1 ` Θ.

Proof. By Lemma 4.3 on the preceding page for empty Θl and Θr = Θ. �

Corollary 4.5 (A single coin) If n ` Θ then 1 ` Θ.

Proof. By Theorem 4.4 for m = 0. �

4.1.1 Free GoTo

From Theorem 4.4 we can obtain a version of GoTo that does not spend any
coins, but does require at least one coin to be available.

Theorem 4.6 (Free GoTo)
If n+ 1 ` B,Θ where B is an empty block whose opening nominal occurs in Θ,
then n+ 1 ` Θ.

Proof. By applying GoTo we have n+ 2 ` Θ and then Theorem 4.4 gives us
n+ 1 ` Θ as wanted. �

The requirement for a single coin to be available essentially comes from the case
where we need to immediately open a new block to close the branch. Given that
we can strengthen any derivation to only make use of one coin, we may wonder
whether we actually need the ability to have more coins in the bank or if we
could make do with a Boolean flag telling us whether GoTo is allowed or not.
That is, could we have a GoTo rule like this: 0 ` B,Θ =⇒ 1 ` Θ. But note
that Theorems 4.4 and 4.6 do not reduce the number of coins to m but to m+ 1
which would map to 1 in the Boolean scheme and not match the antecedent of
the proposed GoTo, preventing further applications. For the proof, we need the
interim flexibility of having more than one coin available.
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4.2 As Good as New

In this section I will show that any formula that
is not new to a branch can be omitted. Or viewed
from the point of constructing a branch, that
we can extend the current block with a formula
that already occurs on a block of the same type.
This allows us to obtain versions of the ST rules
without the R1 restriction. Figure 4.1 illustrates
the proof idea: Given a branch, we are going to
mark a lasting occurrence of φ on an i-block (→)
along with a number of other occurrences that
are to be omitted on the new branch (�). I will
then show that every time one of the omitted oc-
currences is used as rule input, we could instead
have used the lasting occurrence. To omit the
R1 restriction, we consider a branch with an ex-
tension that is legal for some rule but maybe not
under R1. If the extension includes something
new then the original rule applies and if not then
it can be omitted as it occurs elsewhere.

...

i
� φ

...

i
→ φ

...

i
� φ

...

 

...

i

...

i
φ

...

i

...

Figure 4.1:
Strengthening.

To mark occurrences I will make use of a set of indices into the branch which is
introduced in the next section. Since the proof is not very difficult, I will focus
on its formalization.

4.2.1 Indexing

Indices into a branch are pairs of natural numbers
where the first component specifies the block and the
second component specifies the formula on that block.
The notation Θ(v) stands for the v’th block in Θ and
Θ(v)(v′) ≡ Θ(v, v′) stands for the v′’th formula on
that block. Figure 4.2 illustrates the scheme. The
indices start from the top such that they do not need
to be updated if we extend the branch with a new
block or the current block with additional formulas.
If ∆ is an index set, let ∆(v) = {v′ | (v, v′) ∈ ∆} be
its v-projection.

φ0 (0, 0)
...

φm0 (0,m0)

...

ψ0 (n, 0)
...

ψmn (n,mn)

Figure 4.2: Indexing.
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4.2.2 Duplicates

The following definition is called Dup p i branch in the formalization.

Definition 4.7 (Duplicate set) A set of indices ∆ is a duplicate set for
φ at i in Θ iff for every index (v, v′) ∈ ∆, Θ(v) is an i-block, Θ(v, v′) = φ and
there is an index (w,w′) /∈ ∆ such that Θ(w) is an i-block and Θ(w,w′) = φ.

Remark 4.8 (Duplicate set projection) If ∆ is a duplicate set for
φ at i in Θ and Θ(v) is some block, then for all v′ ∈ ∆(v), Θ(v, v′) = φ.

4.2.3 Omitting

The omitting of formulas on a branch is decomposed into omitting formulas on
its blocks using the index projection. Recall that blocks formally consist of a
list of formulas paired with an opening nominal. The following operation, omit,
prunes a list of formulas, ps, based on a set of block indices, xs:

primrec omit :: 〈nat set ⇒ ( ′a, ′b) fm list ⇒ ( ′a, ′b) fm list〉 where
〈omit xs [] = []〉

| 〈omit xs (p # ps) = (if length ps ∈ xs then omit xs ps else p # omit xs ps)〉

The first line specifies the type of the function and the next line the operation
on an empty list. The final line checks whether to include the formula p in the
result by looking up its index, length ps, in the given index set.

We lift this to work on the branch using the following indexed mapping function
which applies a function f to every element of the list but also passes as argument
to f the index of the element, length xs:

primrec mapi :: 〈(nat ⇒ ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list〉 where
〈mapi f [] = []〉

| 〈mapi f (x # xs) = f (length xs) x # mapi f xs〉

definition omit-branch :: 〈(nat × nat) set ⇒ ( ′a, ′b) branch ⇒ ( ′a, ′b) branch〉

where
〈omit-branch xs branch ≡ mapi (λv . omit-block (proj xs v)) branch〉

In the above, the function omit-block is omit lifted to work on blocks and proj xs
v is exactly the projection ∆(v) where xs is how I write ∆ in the formalization.
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4.2.4 Induction

The main lemma ST-Dup is shown by rule induction and the full proof is omitted.
Note that strengthening does not change the number of coins in the bank, since
any omitted formula cannot have come about through a rule application because
that would violate R1:

lemma ST-Dup:
assumes 〈n ` branch〉 〈Dup q i branch xs〉

shows 〈n ` omit-branch xs branch〉

Most cases follow straight-forwardly from the following lemmas: If a formula
occurs at a before the strengthening then it does so afterwards and vice versa:

lemma omit-branch-mem:
assumes 〈Dup p i branch xs〉 〈q at a in branch〉

shows 〈q at a in omit-branch xs branch〉

lemma omit-branch-mem-dual :
assumes 〈p at i in omit-branch xs branch〉

shows 〈p at i in branch〉

The latter result is used to show, contrapositively, that diamonds remain unwit-
nessed on the strengthened branch and that formulas in general remain new; a
requirement since we have yet to lift R1 and R2.

Finally for GoTo and (3) it is necessary to show that after strengthening the
branch contains the same set of nominals.

Note that the result does not hold if any of the rules requires its input to occur
on a specific block, like the original Nom rule requires the shared nominal to
occur on the current block, since we are allowed to omit any formula in favor of
another and R1 prevents us from making any copies.

4.2.5 Lifting R1

With the above result we can obtain the following rule for extending the branch
with an “old” formula:
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theorem Dup:
assumes 〈n ` (p # ps, a) # branch〉 〈¬ new p a ((ps, a) # branch)〉
shows 〈n ` (ps, a) # branch〉

In the formalization, opening nominals cannot be indexed as they do not occur
in the list with the other formulas but as the second component of a pair. This
complicates the proof of Dup but I think it is a reasonable trade-off over making
the indexing more complex or losing the ability to easily discern the opening
nominal of a block.

Using Dup, the R1-unrestricted rules can now be obtained automatically and I
will use these from now on. Take for instance the (¬¬) rule:

lemma Neg ′:
assumes

〈(¬ ¬ p) at a in (ps, a) # branch〉

〈n ` (p # ps, a) # branch〉

shows 〈n ` (ps, a) # branch〉

Note again that the number of coins is unchanged, since the extension may have
been justified by strengthening instead of a rule application. One could use
Theorem 4.4 on page 27 to write 1 instead of n in the goal, but this would throw
away information in the case where n is zero, so I prefer this variant.

Strengthening is the only property presented in this chapter that always preserves
the ability to close a branch starting from zero coins so for brevity the remaining
lemmas will be shown for an existentially quantified number of coins. Therefore
it is useful to prove the following generalization of the (∨) rule where the number
of coins in each branch does not need to match:

lemma DisP ′′:
assumes

〈(p ∨ q) at a in (ps, a) # branch〉

〈n ` (p # ps, a) # branch〉 〈m ` (q # ps, a) # branch〉

shows 〈max n m ` (ps, a) # branch〉

4.3 Too Many Witnesses

In this section I will first show a substitution lemma and then use it to lift the
R2 restriction on the (3) rule.
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4.3.1 Substitution

Jørgensen et al. give a substitution lemma for the unrestricted ST based on
substituting a nominal for another, one at a time [JBBB16, Lemma 3.2]. Here I
show a similar substitution lemma, but for the restricted, present ST and based
on a substituting function applied to all nominals that occur on the branch. The
substitution on formulas is encoded as follows in Isabelle:

primrec sub :: 〈( ′b ⇒ ′c) ⇒ ( ′a, ′b) fm ⇒ ( ′a, ′c) fm〉 where
〈sub - (Pro x ) = Pro x 〉

| 〈sub f (Nom i) = Nom (f i)〉
| 〈sub f (¬ p) = (¬ sub f p)〉
| 〈sub f (p ∨ q) = (sub f p ∨ sub f q)〉
| 〈sub f (3 p) = (3 sub f p)〉
| 〈sub f (@ i p) = (@ (f i) (sub f p))〉

Note that the substitution may change the type
of the nominals, say from integers to strings. If
θ is a substitution function and φ is a formula,
φθ denotes the formula obtained by applying
the substitution. Similarly, Figure 4.3 illustrates
how substitution is lifted to blocks and branches
and Bθ and Θθ denote each, respectively. For
brevity, I am going to assume that the type of
the substitution function always matches the
formula, block or branch it is applied to.

...

i
φ1

φ2

...

...

 

...

θ(i)
φ1θ
φ2θ
...
...

Figure 4.3:
Substitution.

I will show that if a closing tableau exists for a branch Θ, then for any substitution
θ either with same domain and co-domain or an infinite co-domain, a closing
tableau exists for Θθ. The requirement on θ is needed for the (3) case.

First, note that since I am not requiring the substitution to be injective, two
distinct formulas may be collapsed into the same formula by the substitution.
As such, a previously R1-legal extension, because the formula was new to the
branch, may no longer be one. Lifting R1 is a prerequisite for this lemma.

Remark 4.9 (Substituted occurrence) Let θ be a substitution func-
tion. If φ occurs at i in Θ then φθ occurs at θ(i) in Θθ (Figure 4.3).

Theorem 4.10 (Substitution) Let θ be a substitution function. Assume
that for all finite sets A, if there exists a nominal not in A then there exists a
nominal not in the image of A under f . If ` Θ then ` Θθ.
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Proof. Shown by rule induction over the construction of Θ for an arbitrary θ.

Closing By assumption we have φ and ¬φ at i in Θ, so by Remark 4.9 on the
facing page we have φθ and (¬φ)θ ≡ ¬(φθ) at θ(i) in Θθ. It closes immediately.

Case (¬¬) By assumption we have ¬¬φ at a in Θ and the current block is
an a-block. By the induction hypothesis we know that the substituted branch
extended by φθ has a closing tableau: ` φθ −θ(a) Θθ. By Remark 4.9 we have
¬¬(φθ) at θ(a) in Θθ, so by the unrestricted (¬¬) rule we have ` Θθ as desired.

The cases for (∨), (¬∨), (¬3) (@), (¬@) and Nom are similar. GoTo is trivial.

Case (3) By assumption we have 3φ at a in Θ, the nominal i is fresh in Θ and
by the induction hypothesis ` (@iφ)θ′ −θ′(a) (3i)θ′ −θ′(a) Θθ′ for any θ′. The
3φ is unwitnessed at a in Θ but since the substitution may collapse formulas,
3φθ may be witnessed at θ(a) in Θθ. Thus there are two cases:

If 3φθ is witnessed at θ(a) in Θθ then let i′ be the witnessing nominal, such that
@i′(φθ) and 3i′ both occur at θ(a) in Θθ. Apply the induction hypothesis at
θ(i := i′) to obtain ` @i′(φθ)−θ(a) 3i

′−θ(a) Θθ, where the added assignment has
been reduced away in the places where i is fresh. Both formulas in the extension
are justified by the Nom rule so we obtain ` Θθ as needed.

Otherwise the formula is unwitnessed. To apply the (3) rule, we need the
witnessing nominal to be fresh in Θθ but since θ is not necessarily injective, this
may not be the case for θ(i). But since Θ is finite, we have by assumption a
nominal j that is fresh to Θθ. Apply the induction hypothesis at θ(i := j) to
learn ` @j(φθ)−θ(a) 3j −θ(a) Θθ where, again, I have reduced the term using
the fact that i is fresh in Θ. The (3) rule now applies: 3φθ is unwitnessed at
θ(a) in Θθ and we have ensured that j is fresh. Thus we can conclude ` Θθ. �

Corollary 4.11 (Substitution into same type) Let θ be a substi-
tution function whose domain and codomain coincide. If ` Θ then ` Θθ.

Proof. For any finite set A and substitution θ′, the cardinality of the image of
A under θ is at most that of A since θ′ can only collapse distinct nominals, not
separate identical ones. Thus the existence of a fresh nominal is preserved and
the thesis follows from Theorem 4.10 on the preceding page.
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Corollary 4.12 (Substitution with infinite codomain)
Let θ be a substitution function with an infinite codomain. If ` Θ then ` Θθ.

Proof. For any finite set A and substitution θ′, the image of A under θ′ is also
finite. Since the codomain of θ′ is infinite, a fresh nominal exists and the thesis
follows from Theorem 4.10 on page 32.

4.3.2 Lifting R2

To lift R2 we can employ the same trick as in the (3) case in the proof of
Theorem 4.10 on page 32.

Theorem 4.13 (Unrestricted (3)) If ` @iφ −a 3i −a Θ, i is fresh in
Θ and φ is not a nominal, then ` Θ.

Proof. If 3φ is unwitnessed at a in Θ then the restricted (3) rule applies
directly. Otherwise let i′ be the witnessing nominal, obtain ` @′iφ−a 3i′ −a Θ
using Corollary 4.11 on the preceding page and the fact that i is fresh, and
justify the extension using Nom (or strengthening). �

4.4 General Satisfaction

To obtain the unrestricted versions of (@) and (¬@) as depicted in Figure 3.5 on
page 14 we will need to show a structural lemma that allows us to rearrange,
add and contract blocks on a branch.

Figure 4.4 illustrates the structural property.
Given a closeable branch consisting of blocks
B1, B2, . . . , Bn in that order, I will show that a
closing branch exists for any sequence of blocks
B′1, B

′
2, . . . , B

′
m that are a superset of the origi-

nal: {B1, B2, . . . , Bn} ⊆ {B′1, B′2, . . . , B′m}.
This lemma is slightly stronger than Lemma
3.3(i) given by Jørgensen et al. which states
that a closed tableau exists for any superset
of blocks but leaves the order of the blocks un-
specified [JBBB16]. As shown here, we get to
pick the order.

B1

B2

...

Bn

 

B′1

B′2

...

B′m

Figure 4.4:
Rearranging.
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4.4.1 Rearranging blocks

Denote the formulas on a block B by Formulas(B).

Lemma 4.14 (Dropping current block) If ` Bn, Bn−1, . . . , B1, and
there is an i such that 1 ≤ i ≤ n− 1, Formulas(Bn) ⊆ Formulas(Bi) and Bi, Bn
have the same opening nominal then ` Bn−1, . . . , B1.

Proof. Figure 4.5 illustrates the applications of Nom and GoTo. �

Since the number of formulas to be dropped
by Nom can vary, the proof is formalized using
induction. However, the standard induction prin-
ciple works in the wrong direction: Assuming
a property holds for a list, it asks us to show
that it still holds when adding an extra element;
here we want to show that the branch remains
closeable when removing a formula from the cur-
rent block. Therefore, I use the following custom
induction principle instead:

lemma list-down-induct
[consumes 1 , case-names Start Cons]:
assumes 〈∀ y ∈ set ys. Q y〉 〈P (ys @ xs)〉

〈
∧
y xs. Q y =⇒ P (y # xs) =⇒ P xs〉

shows 〈P xs〉 using assms by (induct ys) auto

...

1. a
...

2. φ1

...
3. φ2

...

4. a GoTo
5. φ1 Nom 1, 2, 4
6. φ2 Nom 1, 3, 4

...
...

Figure 4.5:
Dropping a block.

The principle allows us to drop a prefix of a list if we know that a property, Q,
holds for all elements in that prefix, here that the formula appears earlier on the
same type of block. There are two cases dubbed Start and Cons. For the former
we need to show that the property P holds for the full list, P (ys @ xs), and for
the latter that if we know the property holds for a list, xs, with some head y,
P (y # xs), and we know Q y, then we we can show P xs.

The following notation is useful for the next theorem: Given a branch Θ consisting
of blocks B1, B2, . . . , Bn, let Blocks(Θ) be the set of blocks {B1, B2, . . . , Bn}.

Theorem 4.15 (Branch structure) Assume the universe of nominals
is infinite. If ` Θ and Blocks(Θ) ⊆ Blocks(Θ′) then ` Θ′.

Proof. By induction over the construction Θ’s closing tableau, for arbitrary Θ′.
In the following, let Θ ≡ Bn, Bn−1, . . . , B1 and Θ′ ≡ B′m, B′m−1, . . . , B

′
1.
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Closing By assumption we have both φ on some i-block in Θ and ¬φ on some
i-block in Θ. Since all blocks in Θ also occur in Θ′, Θ′ closes immediately.

Case (¬¬) By assumption we have ¬¬φ at a in Θ and the current block, Bn,
is an a-block. The induction hypothesis says that Blocks(Θ) ⊆ Blocks(Θ′) and
that for any Θ′′ whose blocks are a superset of Blocks(φ−a Bn, Bn−1, . . . , B1),
we know ` Θ′′.

Since the current block of Θ′ is not necessarily Bn, we cannot apply the induction
hypothesis directly at φ−a Θ′. Instead, we add the entire block φ−a Bn to the
front of Θ′ and learn that ` φ−a Bn,Θ′.

From the assumption, we have ¬¬φ at a in Bn,Θ′ so the (¬¬) rule applies and we
obtain ` Bn,Θ′. We need to show ` Θ′, but we know by the induction hypothesis
that Bn occurs in Θ′ so the case closes by Lemma 4.14 on the preceding page.

The cases for (∨), (¬∨), (¬3), (@), (¬@), GoTo and Nom are similar.

Case (3) In this case we have by assumption 3φ at a in Θ, the current block
is an a-block, φ is not a nominal and the nominal i is fresh to Θ. The induction
hypothesis says that Blocks(Θ) ⊆ Blocks(Θ′) and that for any Θ′′ whose blocks
are a superset of Blocks(@iφ−a 3i−a Bn, Bn−1, . . . , B1), we know ` Θ′′.

We cannot follow the same strategy as for (¬¬) since i may not be fresh to Θ′

and so the (3) rule would not apply to justify the extension. Instead, let j be
a nominal that is fresh to Θ′ (and thus also Θ). The existence of j is justified
by the fact that Θ′ contains a finite number of nominals and the universe of
nominals is assumed to be infinite.

Let θ be the substitution that simultaneously maps i to j and j to i and leaves
all other nominals as is. Note that for any block B ∈ Blocks(Θ), Bθ = B since
both i and j are fresh to Θ. Therefore, Blocks(Θ) ⊆ Blocks(Θ′θ); only any new
blocks in Θ′ are affected by the substitution. And so, the previous trick applies:
Blocks(@iφ −a 3i −a Θ) ⊆ Blocks(@iφ −a 3i −a Bn,Θ′θ) and the induction
hypothesis gives us ` @iφ−a 3i−a Bn,Θ′θ.

The witnessing nominal i is fresh to Bn by assumption and to Θ′θ due to θ, so
rule (3) applies and we learn ` Bn,Θ′θ. We have Bnθ = Bn ∈ Blocks(Θ′θ) so by
Lemma 4.14 on the previous page we know ` Θ′θ. Finally, we use Corollary 4.11
on page 33 to obtain ` Θ′θθ which reduces to ` Θ′ by the nature of θ. �
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Theorem 4.16 (Block structure) Assume the universe of nominals is
infinite. If ` Bn,Θ, Formulas(Bn) ⊆ Formulas(B′n) and Bn, B′n have the same
opening nominal then ` B′n,Θ.

Proof. Similar to that of Theorem 4.15 on page 35. The GoTo case follows
from that theorem and Lemma 4.14 on page 35, without appeal to the induction
hypothesis by first weakening with B′n and then dropping Bn. �

4.4.2 Lifting R5

Recall the general rules for the satisfaction statement as given in Figure 3.5 on
page 14. E.g. (@): If in Θ we have @iφ at b and i at a and the current block is
an a-block then φ is a sound extension. Or if we think in the other direction,
then the branch remains closeable without φ.

Figure 4.6 shows how weakening is used to obtain this version of the rule from
its restricted variant. Each squiggly arrow, ( ), represents an application of
Theorem 4.15 on page 35. We start on the left from the branch that we assume
has a closing tableau. Through weakening so does the middle branch, where the
removal of φ is justified by Nom. By swapping the bottom two blocks, we arrive
at the right branch and from the (@), Nom and GoTo rules we know that it can
be closed without the extension.

b a
@iφ i

a
|
φ

 

b a
@iφ i

i
a
φ

a
|
φ Nom

 

b a
@iφ i

a
|
φ

i GoTo
a Nom
φ (@)

Figure 4.6: Proving the unrestricted (@) rule.

The lifting of R5 for (¬@) is similar and omitted. Note that this lifting makes
use of Theorem 4.15 on page 35 and thereby relies on the universe of nominals
to be infinite. Therefore, I will assume this to be the case from now on. Since
we are not weakening with any fresh nominals it should be possible to prove the
lifting without this assumption but for brevity this is not done here.

As Figure 4.6 illustrates with the application of Nom, Theorem 4.15 shows that
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forward referencing is admissible in the system as long as it is acyclic. We are
justifying φ by an extension that appears after φ but does not depend on it, so
it might as well have appeared before and using it to justify φ is allowed.



Chapter 5

Bridge

5.1 Overview

Figure 5.1 shows the Bridge rule: If j is reachable from i and j and k are equivalent,
then k is reachable from i. This rule will be of use for the completeness proof
but is also interesting in its own right. Jørgensen et al. note that the rule can
be seen as a restricted form of cut for nominals [JBBB16]. They show that ST
can do something similar to Bridge in terms of the two blocks that appear in the
completeness proof but do not show admissibility of the general rule.

i a a
3j j k

i
|

3k

Figure 5.1: The Bridge rule.

In this chapter I will show that Bridge is admissible in ST. The idea is as follows:
Assuming ` 3k −i Θ, I will show first ` 3j −i Θ and then use the Nom rule to
justify the 3j extension. However, closing the branch may have relied on using
3k as input to some rule. This motivates the notion of a descendant which will
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be formally defined below. Intuitively, I will show every descendant of the 3k
can be replaced in a suitable way such that the branch can still be closed.

The proof follows the one by Jørgensen et al. [JBBB16] with two important
generalizations. First, their notion of a descendant is tied directly to rule
applications whereas mine only depends on the conditions for a rule to be
applied. In other words, where they ask whether a given formula is certainly a
descendant, I ask whether it could be considered one. This means I only have
to look at the formulas on the branch, not the applied rules. Second, where
Jørgensen et al. replace every descendant on a branch, I replace only occurrences
specified by a given set of indices into the branch. This makes it easier to employ
standard rule induction and thus eases formalization. In the end, I take the set
to contain only the index of the single 3k that I want to be replaced.

5.2 Descendants

This section defines what can be considered a descendant of 3k at i in Θ. If we
inspect the rules of ST then we see that 3k can only be used as input to two
rules, (¬3) and Nom. Based on this information, we inductively built a set of
indices that satisfies a DΘ,i,k-relation. If a set is DΘ,i,k then all indices in the
set point at formulas that can be considered descendants of 3k on an i-block in
Θ, including the initial 3k. There are three cases, the first starts off the set, the
second mimics the (¬3) rule and the third mimics the Nom rule:

Definition 5.1 (Descendant set)

Initial If Θ(v) is an i-block and Θ(v, v′) = 3k, then {(v, v′)} is DΘ,i,k.

Derived If ∆ is DΘ,i,k, (w,w′) ∈ ∆, Θ(w) is an a-block, Θ(w,w′) = 3k, Θ(v)
is an a-block and Θ(v, v′) = ¬@kφ for some φ then {(v, v′)} ∪∆ is DΘ,i,k.

Copied If ∆ is DΘ,i,k, (w,w′) ∈ ∆, Θ(w) is a b-block, Θ(w,w′) = φ, there
is a nominal j that occurs both at a and b in Θ, Θ(v) is an a-block and
Θ(v, v′) = φ then {(v, v′)} ∪∆ is DΘ,i,k.

Lemma 5.2 (Descendant types.) If ∆ is DΘ,i,k and (v, v′) ∈ ∆ then
the formula Θ(v, v′) is either 3k or ¬@kφ for some φ.

Proof. By inspection of the cases for constructing ∆. �

Lemma 5.2 is an analogue of Lemma 4.1 by Jørgensen et al. [JBBB16].
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Note that due to the Nom rule we cannot say anything about the opening nominal
of the block that the descendant appears on.

Lemma 5.3 (Descendants of extensions.) If ∆ is DΘ,i,k and Θ′ is
an extension of Θ then ∆ is DΘ′,i,k.

Proof. By construction all indices in ∆ are bound in Θ. Since indices are
stable under extensions, ∆ is DΘ′,i,k. �

5.3 Replacements

Having considered 3k as input to a rule, let us now consider the corresponding
output. For the (¬3) rule, the output is ¬@kφ where φ is also part of the rule
input. If we replace the 3k with a 3j, we need to replace the rule output with
¬@jφ for it to be justified. For the Nom rule we output the input formula, so
we need to replace 3k with 3j in both places.

Following Jørgensen et al. [JBBB16], I call ¬@jφ the j-replacement of ¬@kφ
and 3j the j-replacement of 3k. The j-replacement of any other formula is
itself. I also use pj to denote the j-replacement of p. The branch obtained by
replacing every index from ∆ in Θ by its j-replacement is denoted Θ∆.

Remark 5.4 (Out of bounds indices.) If none of the indices in ∆′

are bound in Θ then Θ∆∪∆′
= Θ∆.

Lemma 5.5 (Θ∆ nominals) Disregarding j and k, the same nominals occur
on Θ and Θ∆.

Proof. The only difference between Θ and Θ∆ is that some occurrences of k
may have been replaced by j. �

5.4 Induction

Lemma 5.6 (Replacing descendants.) If ` Θ, j and k both appear at
c in Θ and the set of indices ∆ is DΘ,i,k, then ` Θ∆.

Proof. By rule induction for an arbitrary ∆.
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Closing By assumption we have both φ and ¬φ at a in Θ.

In Θ∆, these occurrences may or may not have been replaced depending on their
shape and on ∆. By the definition of a j-replacement, at most one of them can
be replaced at a time. Assuming one of them is replaced, there are three cases
as seen in Table 5.1 on the facing page. These three cases each have a closing
extension as seen in Figure 5.2 on the next page. In the fourth case where none
of φ and ¬φ are replaced, Θ∆ closes immediately.

Case (¬¬) We have ¬¬φ at a in Θ, the current block is an a-block and ∆
is DΘ,i,k. To apply the induction hypothesis we need a set of indices which
is Dφ−aΘ,i,k, that is, relates to the extended branch. By Lemma 5.3 on the
preceding page, the given set ∆ is applicable. Thus we have ` φ−a Θ∆, where
φ is unchanged since its index cannot occur in ∆. Moreover we have ¬¬φ at a
in Θ∆ since (¬¬φ)

j
= ¬¬φ. Thus (¬¬) applies and we conclude ` Θ∆.

The cases for (∨), (¬∨) and (@) are similar.

By Lemma 5.5 on the previous page and the fact that both j and k occur directly
on blocks in Θ, the nominals in Θ and Θ∆ are exactly the same. Thus, (3) and
GoTo also follow in a similar fashion.

Case (¬3) We have both ¬3φ and 3i′ at a in Θ, the current block is an
a-block and we know that ∆ is DΘ,i,k. Let (w,w′) be the index of the given 3i′.
There are two cases.

If (w,w′) /∈ ∆ then 3i′ is also at a in Θ∆ and the case follows similarly to (¬¬):
The rule input is unchanged so we do not have to replace the output.

Otherwise, (w,w′) ∈ ∆ so by Lemma 5.2 on page 40, i′ = k and (3i′)
j

= 3j.
To account for this, we need to extend ∆ to include the index of the output,
¬@kφ, to make sure it becomes ¬@jφ such that the (¬3) rule justifies it. Let
(v, v′) be the index of the output. By Lemma 5.3 on the previous page, ∆ is
D¬@kφ−aΘ,i,k and by the Derived case, so is {(v, v′)} ∪∆.

Thus we apply the induction hypothesis at the extended index set, {(v, v′)} ∪∆,
and learn ` (¬@kφ)

j −a Θj{(v,v′)}∪∆ . By Remark 5.4 on the preceding page we
have ` ¬@jφ−a Θ∆. We can now apply the (¬3) rule and conclude the case.
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φ φj (¬φ)
j

3k 3j ¬(3k)
¬@kψ ¬@jψ ¬¬@kψ
@kψ @kψ ¬@jψ

Table 5.1: The j-replacements for complementary pairs.

1. c
2. j

3. c
4. k

5. a
6. 3j φj

7. ¬3k (¬φ)
j

...

8. a GoTo
9. ¬@jk (¬3) 6, 7

10. j GoTo
11. k Nom 2, 4, 10
12. ¬k (¬@) 9, 10

×

1. c
2. j

3. c
4. k

5. a
6. ¬@jψ φj

7. ¬¬@kψ (¬φ)
j

...

8. a GoTo
9. @kψ (¬¬) 7

10. j GoTo
11. k Nom 2, 4, 10
12. ψ (@) 9, 11
13. ¬ψ (¬@) 6, 10

×
1. c
2. j

3. c
4. k

5. a
6. @kψ φj

7. ¬(@jψ) (¬φ)
j

...

8. j GoTo
9. k Nom 2, 4, 8
10. ψ (@) 6, 9
11. ¬ψ (¬@) 7, 8

×
Figure 5.2: Closing extensions for the three interesting base cases.
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Case (¬@) We have ¬@aφ at b in Θ, the
current block is an a-block and we know
that ∆ is DΘ,i,k. Let (w,w′) be the index of
¬@aφ in Θ. There are two cases.
If (w,w′) /∈ ∆ then, like before, the case
follows similarly to (¬¬).
Otherwise, (w,w′) ∈ ∆ so by Lemma 5.2
on page 40, a = k and (¬@aφ)

j
= ¬@jφ.

By the induction hypothesis we know `
¬φ−a Θ∆. We cannot apply the (¬@) rule
just yet since we have ¬@jφ at b in Θ∆ and
the current block is a k-block, but by Theo-
rem 4.16 on page 37 we get ` ¬φ−k j−kΘ∆.
The (¬@) and Nom rules justify the exten-
sion as illustrated in Figure 5.3.

1. c
2. j

3. c
4. k

5. b
6. ¬@jφ

...

7. k (a = k)
|

8. j Nom, 2, 4, 7
9. ¬φ (¬@), 6, 8

×
Figure 5.3: Closing (¬@).

Case Nom We have both φ and i′ at b in Θ and i′ at a in Θ. The current
block is an a-block and we know that ∆ is DΘ,i,k. Let (w,w′) be the index of
the given φ. If (w,w′) /∈ ∆ then the case follows similarly to (¬¬).

Otherwise, (w,w′) ∈ ∆ so the input to the rule gets replaced and we need to
replace the output too. By Lemma 5.3 on page 41, ∆ is Dφ−aΘ,i,k and by the
Copied case, so is {(v, v′)} ∪∆.

Thus we know from the induction hypothesis and Lemma 5.4 on page 41 that
` φj −a Θ∆. The remaining rule input stays the same on Θ∆, so the Nom rule
applies and concludes the case. �

5.5 Derivation

Theorem 5.7 (Bridge is admissible in ST) If 3j is at i in Θ, j and
k are both at a in Θ, the current block is an i-block and ` 3k −i Θ, then ` Θ.

Proof. Let (v, v′) be the index of the final 3k and let ∆ be the set containing
just that index. By the Initial case, ∆ is D3k−iΘ,i,k. Thus ` (3k)

j −i Θ∆ by
Lemma 5.6 on page 41. Then ` 3j −i Θ by Lemma 5.4 on page 41 and finally,
due to the Nom rule, ` Θ. �



Chapter 6

Completeness

By now we have lifted all of the imposed termination restrictions and proved the
Bridge rule to be admissible. This means that the synthetic completeness proof
by Jørgensen et al. [JBBB16] applies to the calculus without modifications. In
this chapter I will focus on its formalization and point out a small error in their
definition of Hintikka sets.

The overall idea of the synthetic approach is as follows. First, we will classify
certain sets of blocks as Hintikka sets and show that we can construct a model,
called the named model, for any formula on a block in such a set. Next we will see
how to extend any consistent set of blocks into a maximally consistent, saturated
set using a Lindenbaum-Henkin construction. Finally we will see that such a set
is a Hintikka set. Completeness then follows by contradiction: If φ is valid but
¬φ does not have a closing tableau then the set consisting of a single block with
¬φ on it is consistent and can be extended into a Hintikka set. Thus, a model
for ¬φ can be obtained, contradicting the assumption that φ is valid [JBBB16].
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6.1 Hintikka sets

Jørgensen et al. give a 13-part definition of when a set of blocks is a Hintikka
set and argue that we should think of such a set H as an abstract version of an
exhausted open tableau branch [JBBB16]. For example, requirement (x) says
that if there is an i-block with ¬¬φ on it in H then it should also have an i-block
with φ on it. The corrected, formalized definition can be seen in Figure 6.1 on
page 48. The correction is explained in section 6.1.2 on the next page.

Note that the blocks used by Jørgensen et al. are sets of formulas and so they
often require these sets to be finite. I continue to work with lists of formulas
which are always finite. Furthermore my blocks are named by construction so
where they refer to a “finite named block” I will simply write “block.”

Let H be a Hintikka set of blocks. The names of H are the nominals that appear
as opening nominals in H. To build the named model over H we first need to
consider equivalence classes of nominals. Nominals i and j are equivalent in H,
written i ∼H j, if there is an i-block in H with j on it. Or in Isabelle syntax:

definition hequiv :: 〈( ′a, ′b) block set ⇒ ′b ⇒ ′b ⇒ bool 〉 where
〈hequiv H i j ≡ Nom j at i in ′ H 〉

It follows from the Hintikka definition that this relation is an equivalence relation
on the names in H:

abbreviation hequiv-rel :: 〈( ′a, ′b) block set ⇒ ( ′b × ′b) set〉 where
〈hequiv-rel H ≡ {(i , j ) |i j . hequiv H i j}〉

lemma hequiv-rel : 〈hintikka H =⇒ equiv (names H ) (hequiv-rel H )〉

using hequiv-refl-rel hequiv-sym-rel hequiv-trans-rel by (rule equivI )

I will denote by |i| the set of nominals equivalent to i. The underlying Hintikka
set is implicit. As shorthand, I will say that a formula occurs at |i| in H if it
occurs on some i′-block in H with i′ ∈ |i|.

6.1.1 Named model

We are now ready to construct the named model of H. The worlds of the model
are sets of equivalent nominals. The assignment maps a nominal i to |i|:
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definition assign :: 〈( ′a, ′b) block set ⇒ ′b ⇒ ′b set〉 where
〈assign H i ≡ proj (hequiv-rel H ) i〉

From world |i| we can reach all and only worlds |j| where 3j occurs at |i| in H:

definition reach :: 〈( ′a, ′b) block set ⇒ ′b set ⇒ ′b set set〉 where
〈reach H is ≡ {assign H j |i j . i ∈ is ∧ (3 Nom j ) at i in ′ H }〉

Finally, propositional symbol x is true at |i| iff x occurs at |i| in H:

definition val :: 〈( ′a, ′b) block set ⇒ ′b set ⇒ ′a ⇒ bool 〉 where
〈val H is x ≡ ∃ i ∈ is. Pro x at i in ′ H 〉

The Hintikka block lemma states if H is Hintikka and φ occurs on an i-block in
H, then the named model models φ at |i|. For the induction we also need that
¬φ is not modeled. The lemma follows by induction over the complexity of the
formula and the proof is omitted here [JBBB16, Lemma 3.1].

lemma hintikka-model :
assumes 〈hintikka H 〉

shows
〈p at i in ′ H =⇒ Model (reach H ) (val H ), assign H , assign H i |= p〉

〈(¬ p) at i in ′ H =⇒ ¬ Model (reach H ) (val H ), assign H , assign H i |= p〉

6.1.2 Definition correction

Now that we understand the construction of the named model, let us consider
the very first case of the definition by Jørgensen et al.:

(i) If there is an i-block in H with an atomic formula a on it, then there is no
i-block in H with ¬a on it.

Consider the following set of blocks where i and j are distinct nominals and x is
a propositional symbol:

{([i, x], j), ([j,¬x], i)} (6.1)
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definition hintikka :: 〈( ′a, ′b) block set ⇒ bool 〉 where
〈hintikka H ≡
(∀ x i j . Nom j at i in ′ H −→ Pro x at j in ′ H −→
¬ (¬ Pro x ) at i in ′ H )

∧
(∀ a i . Nom a at i in ′ H −→ ¬ (¬ Nom a) at i in ′ H )

∧
(∀ i j . (3 Nom j ) at i in ′ H −→ ¬ (¬ (3 Nom j )) at i in ′ H )

∧
(∀ p i . i ∈ nominals p −→ (∃ block ∈ H . p on block) −→
(∃ ps. (ps, i) ∈ H ))

∧
(∀ i j . Nom j at i in ′ H −→ Nom i at j in ′ H )

∧
(∀ i j k . Nom j at i in ′ H −→ Nom k at j in ′ H −→
Nom k at i in ′ H )

∧
(∀ i j k . (3 Nom j ) at i in ′ H −→ Nom k at j in ′ H −→
(3 Nom k) at i in ′ H )

∧
(∀ i j k . (3 Nom j ) at i in ′ H −→ Nom k at i in ′ H −→
(3 Nom j ) at k in ′ H )

∧
(∀ p q i . (p ∨ q) at i in ′ H −→
p at i in ′ H ∨ q at i in ′ H )

∧
(∀ p q i . (¬ (p ∨ q)) at i in ′ H −→
(¬ p) at i in ′ H ∧ (¬ q) at i in ′ H )

∧
(∀ p i . (¬ ¬ p) at i in ′ H −→
p at i in ′ H )

∧
(∀ p i a. (@ i p) at a in ′ H −→
p at i in ′ H )

∧
(∀ p i a. (¬ (@ i p)) at a in ′ H −→
(¬ p) at i in ′ H )

∧
(∀ p i . (@ a. p = Nom a) −→ (3 p) at i in ′ H −→
(∃ j . (3 Nom j ) at i in ′ H ∧ (@ j p) at i in ′ H ))

∧
(∀ p i j . (¬ (3 p)) at i in ′ H −→ (3 Nom j ) at i in ′ H −→
(¬ (@ j p)) at i in ′ H )〉

Figure 6.1: Hintikka definition in Isabelle/HOL.
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We have i and x on a j-block and j and ¬x on an i-block, so there is no violation
of (i). It is easy to verify that this set also satisfies the rest of the Hintikka
requirements. However, i and j are equivalent, i ∼ j, so |i| = |j| and according
to the valuation of the named model x is true at |i| since it occurs at i. But
according to the Hintikka block lemma, ¬x is also true at |i| since it occurs on a
j-block, that is, also at |i|.

To remedy this contradiction, consider again the intuition that Hintikka sets
should correspond to exhausted open tableau branches. The set in equation 6.1
on page 47 breaks this intuition since the Nom rule can be applied to extend
either the j-block with ¬x or the i-block with x. The branch is not exhausted
(and in both cases the resulting blocks violate requirement (i)). To account for
the Nom rule the requirement should be something like:

(i’) If there is an i-block inH with j on it and a j-block inH with a propositional
symbol x on it, then there is no i-block in H with ¬x on it.

This version is what has been formalized. Note that the original definition is
obtained by setting i = j. For nominals the original definition suffices.

The original requirement (ix) states that if there is an i-block in H with ¬(φ∨ψ)
on it then there is an i-block in H with both ¬φ and ¬ψ on it [JBBB16]. I have
relaxed this to say that both ¬φ and ¬ψ must occur at i in H but not necessarily
on the same block. Either variant suffices.

6.2 Lindenbaum-Henkin

In this section we will see how to extend a consistent set of blocks to be maximal
and saturated. A set of blocks is consistent if no finite subset of it can be closed:

definition consistent :: 〈( ′a, ′b) block set ⇒ bool 〉 where
〈consistent S ≡ @S ′. set S ′ ⊆ S ∧ ` S ′〉

6.2.1 Construction

Note that for countable universes of propositional symbols and nominals the set
of formulas is countable. Thus, lists of formulas are countable and so are blocks.
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This means that blocks over these universes can be enumerated. Isabelle can
prove this countability automatically for defined datatypes:

instance fm :: (countable, countable) countable
by countable-datatype

Starting from a consistent set of blocks we are going to enumerate every block
and add it to our set if doing so preserves consistency. If φ is not a nominal then
I will call 3φ a proper diamond. Some of the added blocks may contain proper
diamonds and we will also add blocks that witness these.

Definition 6.1 (3-Witness) Let B be an a-block about to be added to our
growing set S. The a-block B′ is a 3-witness to B if for all proper diamonds
3φ on B, B′ contains @iφ and 3i for i fresh to B, S and the rest of B′.

In the formalization, a function witness constructs the 3-witness of a block given
a set of already used nominals. The extension is then given in two steps. First
as a primitive recursive function that extends the set with only the first n blocks
of the enumeration:

primrec extend ::
〈( ′a, ′b) block set ⇒ (nat ⇒ ( ′a, ′b) block) ⇒ nat ⇒ ( ′a, ′b) block set〉 where
〈extend S f 0 = S 〉

| 〈extend S f (Suc n) =
(if ¬ consistent ({f n} ∪ extend S f n)
then extend S f n
else
let used = (

⋃
block ∈ {f n} ∪ extend S f n. block-nominals block)

in {f n, witness (f n) used} ∪ extend S f n)〉

At 0 the given set is returned unmodified. Otherwise there are two cases for
extending the recursively extended set. If block f n causes inconsistency then it is
not added but if consistency is preserved then it is added alongside a 3-witness.

Jørgensen et al. give three cases by distinguishing whether the added block
contains a 3-formula or not [JBBB16]. This saves them from adding empty
3-witness blocks when the enumerated block does not contain a 3-formula, but
since the empty blocks will be part of the full enumeration anyway, I have chosen
the two-case definition.

To obtain the maximally consistent set, we take the union of all extended sets:
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definition Extend ::
〈( ′a, ′b) block set ⇒ (nat ⇒ ( ′a, ′b) block) ⇒ ( ′a, ′b) block set〉 where
〈Extend S f ≡ (

⋃
n. extend S f n)〉

Jørgensen et al. call this the Lindenbaum-Henkin construction. In the following,
I will call its output the constructed set.

6.2.2 Properties

For brevity I will not go into the proofs of each of these; see Jørgensen et al. for
details [JBBB16, Lemma 3.4]. All the properties will assume that the starting
set S to be extended contains a finite number of nominals. This is to ensure
that fresh nominals are available for the 3-witnesses.

Consistency The constructed set is consistent:

lemma consistent-Extend :
fixes S :: 〈( ′a, ′b) block set〉
assumes inf : 〈infinite (UNIV :: ′b set)〉 and

〈consistent S 〉 〈finite (
⋃

(block-nominals ‘ S))〉
shows 〈consistent (Extend S f )〉

Maximality A consistent set of blocks is maximal if any proper extension is
inconsistent.

definition maximal :: 〈( ′a, ′b) block set ⇒ bool 〉 where
〈maximal S ≡ consistent S ∧
(∀ block . block /∈ S −→ ¬ consistent ({block} ∪ S))〉

The constructed set is maximal:

lemma maximal-Extend :
fixes S :: 〈( ′a, ′b) block set〉
assumes inf : 〈infinite (UNIV :: ′b set)〉 and

〈consistent S 〉 〈finite (
⋃

(block-nominals ‘ S))〉 〈surj f 〉

shows 〈maximal (Extend S f )〉
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Saturation A set of blocks is saturated if every proper diamond is witnessed:

definition saturated :: 〈( ′a, ′b) block set ⇒ bool 〉 where
〈saturated S ≡ ∀ p i . (3 p) at i in ′ S −→ (@ a. p = Nom a) −→
(∃ j . (@ j p) at i in ′ S ∧ (3 Nom j ) at i in ′ S)〉

The constructed set is saturated:

lemma saturated-Extend :
fixes S :: 〈( ′a, ′b) block set〉
assumes inf : 〈infinite (UNIV :: ′b set)〉 and

〈consistent S 〉 〈finite (
⋃

(block-nominals ‘ S))〉 〈surj f 〉

shows 〈saturated (Extend S f )〉

6.3 Smullyan-Fitting

The above properties, allows us to show that the Lindenbaum-Henkin constructed
set is Hintikka without worrying about the particular details of the construction.
See Jørgensen et al. for proofs of some of the cases [JBBB16, Lemma 3.5].

lemma hintikka-Extend :
fixes S :: 〈( ′a, ′b) block set〉
assumes inf : 〈infinite (UNIV :: ′b set)〉 and

〈maximal S 〉 〈consistent S 〉 〈saturated S 〉

shows 〈hintikka S 〉

6.4 Result

Finally let us go through the formalized lemma of the final completeness result.
The result applies to any formula p defined over a countable universe of proposi-
tional symbols and a countably infinite universe of nominals. If the formula is
valid then the branch consisting of a single block with ¬p on it can be closed
starting from a single coin:

theorem completeness:
fixes p :: 〈( ′a :: countable, ′b :: countable) fm〉
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assumes
inf : 〈infinite (UNIV :: ′b set)〉 and
valid : 〈∀ (M :: ( ′b set , ′a) model) g w . M , g , w |= p〉

shows 〈1 ` [([¬ p], i)]〉

We start by proving that a derivation from some number of coins exists and then
reduce it to a single-coin derivation afterwards. The proof goes by contradiction:

proof −
have 〈` [([¬ p], i)]〉
proof (rule ccontr)
assume 〈¬ ` [([¬ p], i)]〉

Since we assume the branch cannot be closed then it is consistent:

then have ∗: 〈consistent {([¬ p], i)}〉
unfolding consistent-def using ST-struct inf
by (metis empty-set list .simps(15 ))

First, define a syntactic abbreviation, ?S, for the Lindenbaum-Henkin constructed
set where from-nat is the function that enumerates the blocks. Then note that
the original set contains a finite number of nominals:

let ?S = 〈Extend {([¬ p], i)} from-nat〉
have 〈finite {([¬ p], i)}〉
by simp

then have fin: 〈finite (
⋃

(block-nominals ‘ {([¬ p], i)}))〉
using finite-nominals-set by blast

Thus the constructed set is consistent, maximal, saturated and hence Hintikka:

have 〈consistent ?S 〉

using consistent-Extend inf ∗ fin by blast
moreover have 〈maximal ?S 〉

using maximal-Extend inf ∗ fin by fastforce
moreover have 〈saturated ?S 〉

using saturated-Extend inf ∗ fin by fastforce
ultimately have 〈hintikka ?S 〉

using hintikka-Extend inf by blast
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Moreover, the original block is still contained in the constructed set and ¬p
occurs on it:

moreover have 〈([¬ p], i) ∈ ?S 〉

using Extend-mem by blast
moreover have 〈(¬ p) on ([¬ p], i)〉
by simp

Thus we can obtain a countermodel for p but, as desired, this contradicts the
assumption that it is valid:

ultimately have 〈¬ Model (reach ?S) (val ?S), assign ?S , assign ?S i |= p〉

using hintikka-model by fast
then show False
using valid by blast

qed

Thus the branch closes and we can use Corollary 4.5 on page 27 to show the
thesis, that it closes when starting from a single coin:

then show ?thesis
using ST-one by blast

qed



Chapter 7

Conclusion

This chapter concludes by first taking a look at how the Nom rule might be
restricted to obtain a terminating system, then I discuss related and future work
and finally I give a brief recap of the presented work.

7.1 On Termination

As mentioned in Chapter 3 it is sometimes possible to apply the presented rules
infinitely due to the Nom rule. The problem is the interplay between (3) which,
given a formula 3φ on an a-block introduces a fresh nominal, i, (¬3) which
reveals information about accessible worlds and the rule Nom. The formula
ψ = 2(3> ∧ (a ∧ >)) at a along with an accessibility formula 3i effectively
produces a fresh accessible world at i and reveals that i is equivalent to a. Thus
we can GoTo i, apply (3), copy ψ to i with Nom, apply (¬3) again and repeat
ad infinitum [BBBJ17, Figure 8].

To prevent this issue, Blackburn et al. say that in this case i was generated by a
and note that Nom should be restricted to not copy formulas to a block type
that was generated by the source block type [BBBJ17]. They achieve this with a
notion of quasi-root subformulas and a splitting of the Nom rule. Their definition
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of a quasi-root subformula assumes a single starting root formula and would
have to be generalized to be formalized conveniently. I propose the following
alternative approach that very directly treats generated nominals specially.

Associate a tag with each nominal on the branch: For a nominal a denote its tag
by tag(a). Two rules are modified. When a fresh nominal i is introduced by (3)
on an a-block, let its tag be one greater: tag(i) = tag(a) + 1. To copy a formula
from a b-block to an a-block using Nom, require that tag(a) ≤ tag(b). Note that
tags are never modified since new tags are only associated with fresh nominals.

If i is generated by j then tag(i) > tag(j) and copying from a j-block to an
i-block is disqualified but copying in the other direction is fine: We are forced to
only copy in the “right direction” towards the older nominals. For an internalized
perspective on tags, let the tag of a nominal match its order of appearance on
the branch; we are only allowed to copy to nominals that appear earlier.

It remains to be shown that if a branch can be closed by copying in the “wrong
direction” then it can also be closed by not doing so. That is, that the restriction
preserves completeness. This work has not been formalized but I sketch a proof
below. The overall idea is that any work done on j after copying “wrongly” from
i to j could have been done on i instead.

First, note that we can still lift R1 in the presence of this restriction but that
lifting collapsing substitution is no longer straight-forward. However, it is possible
to show a version of the rearranging Theorem 4.15 on page 35 that does not
introduce new formulas without lifting any restrictions, since formulas then
remain new (R1) and unwitnessed (R2) on the rearranged branch.

Define an index set ∆k over the branch Θ such that for all (v, v′) ∈ ∆k, Θ(v) is
some i-block, Θ(v, v′) is some φ, φ occurs at k in Θ, tag(i) > tag(k) and there
exists a shared nominal that occurs at both i and k in Θ. Omitting these indices
from a branch corresponds to a generalized Nom rule in the wrong direction. It
is this operation that I will argue is admissible. Given a branch Θ and a set
∆k defined over Θ, let Θ∆k

be Θ with all occurrences in ∆ omitted. Moreover,
allow a designated k-block in Θ∆k

to be extended by formulas that already
appear at an equivalent nominal on the branch. Given a tableau for a branch Θ
with a designated k-block and an index set ∆k I argue by induction over the
construction of Θ that Θ∆k

with an arbitrary weakening of the k-block has a
closing tableau, given that the weakening satisfies the emphasized assumption.

For the closing condition, φ and ¬φ both appear at i in Θ and either φ or ¬φ may
have been removed in Θ∆k

. If neither is removed the branch closes immediately
and if both are removed then they both appear at k so the branch also closes.
Therefore, assume that one of them is removed and call it ψ. Rearrange the
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branch to make the designated k-block the current block and extend it with ψ
using Nom. By the definition of ∆k, the tag of i is greater than that of k so this
extension is legal. The obtained branch closes so Θ∆k

does too.

For the (¬¬) case, ¬¬φ occurs at a in Θ. Assume that it has been omitted in
Θ∆k

as otherwise the case is trivial. Then apply the induction hypothesis at
the designated k-block extended by φ and at ∆k extended by the index of the
φ-extension on the current block. The latter extension is legal exactly because
the designated k-block is extended in tandem which corresponds to working on
the k-block instead of the a-block. To get rid of φ on the k-block, make it the
current block and apply (¬¬). The thesis follows by re-rearranging the blocks.

In cases with multiple input to a rule where only some has been omitted, the
designated k-block can be extended with the remaining input using Nom.

For the (3) case, we know that φ is not witnessed at the current block type,
but it may be witnessed at k. To prevent this, the notion of when a formula is
witnessed needs to be strengthened to account for equivalent nominals such that
φ is witnessed at a in Θ if there exists a block type in Θ equivalent to a that
directly witnesses φ. Since the input 3φ is only omitted if the current block type
is equivalent to k, we know that φ is not witnessed at k either. Moreover, lifting
this stronger restriction should still be possible using the presented technique.

In the Nom case we know that the b-block that is the source of the extension is
not a k-block due to the restrictions on the tags, so the same technique as for
(¬¬) should apply.

The GoTo case is trivial since the nominals on Θ∆k
are the same as on Θ.

By taking the index set to only include a single formula extension and not
weakening the designated k-block, a Nom rule in the wrong direction is obtained.
Coupled with the built-in Nom rule we then have the unrestricted version.

Note that this proof sketch does not make any assumptions on the tags so any
scheme for those will work.

7.2 Related Work

Blackburn et al. point to a number of proof systems for hybrid logic, including
tableau, natural deduction, resolution and Hilbert systems, all based on label-
ing [BBBJ17]. The use of labeling gives a global proof style where formulas are
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nested below some prefix like a satisfaction operator. The work by Bolander and
Blackburn on showing termination of an internalized labeled tableau system is
notable [BB07].

The local proof style used by the presented calculus originates in Seligman’s
natural deduction and sequent calculus systems [Sel97, Sel01]. Instead of a
copying Nom rule, Seligman allows a collapsing substitution of equivalent nom-
inals and the equivalent of GoTo is obtained by packing every formula into a
satisfaction statement, switching world and then unpacking the relevant satis-
faction statements. Braüner avoids most of this packing and unpacking in his
natural deduction system by using a Term rule where you explicitly state which
satisfaction statements to make available in the subproof [Bra13]. The notion of
blocks, and thus the Nom and GoTo rules used here, originates in the work on a
Seligman-style tableau system by Blackburn et al. [BBBJ17].

Linker formalizes in Isabelle/HOL a semantic embedding of a spatio-temporal
multi-modal logic designed for reasoning about motorway traffic which includes
a hybrid logic-inspired at-operator [Lin17]. Linker and Hilscher give a sound
labeled natural deduction proof system for a version of the logic without the
hybrid extension [LH15]. To my knowledge, no other formalization of hybrid logic
in Isabelle has been published. Doczkal and Smolka formalize hybrid logic with
nominals but no special operators in constructive type theory using the proof
assistant Coq. They do not define a proof system but give algorithmic proofs of
small model theorems and computational decidability of satisfiability, validity,
and equivalence of formulas [DS11]. In the proof assistant Agda, the closest
thing to a formalization of hybrid logic is an embedding of the programming
language ML5 by Licata and Harper. ML5 is is based on a Curry-Howard
correspondence with the modal logic S5 and includes a modality that is a
composition of quantification over worlds and the satisfaction operator [LH10].
The present work appears to be the first proof system for hybrid logic with a
formalized completeness proof.

Formalizations of completeness proofs in Isabelle exist for, among others, a
tableau system and a one-sided sequent calculus for first-order logic [Fro19],
a natural deduction system for first-order logic [Ber07], a Hilbert system for
epistemic logic [Fro18] and the first-order resolution calculus [Sch16]. Blanchette
et al. give abstract proofs of soundness and completeness that can be instantiated
for a range of Gentzen and tableau systems for various flavors of first-order
logic [BPT17].
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7.3 Future Work

Formalizing the above restriction of Nom, or an equivalent one, is obvious future
work. I would then like to show that the system is terminating using a direct
decreasing-length argument in the style of Bolander and Blackburn [BB07] instead
of via translation as done by Blackburn et al. [BBBJ17]. Given a terminating
system it should be possible to define an algorithm based on the calculus and
verify soundness, completeness and termination of it. Isabelle supports code
extraction to obtain an executable prover based on the verified algorithm.

Extending the system to handle quantification over worlds or the down-arrow
binder [Bra17] are also options, but then the logic is no longer decidable and we
need to give up on having a terminating system.

It would be interesting to come up with an internalized restriction on GoTo in
place of the current coin system since the notion of coins does not belong to the
object language.

7.4 Conclusion

I have presented a variant of an existing Seligman-style tableau system for
basic hybrid logic and formalized it in the proof assistant Isabelle/HOL. The
presented system is not terminating but does incorporate a number of restrictions
to rule out sources of non-termination. Some of these restrictions have been
reformulated to be more amenable to formalization and I have shown how to lift
each of them by working within the proof system instead of via translation into
a different system. I have also shown the full Bridge rule to be admissible using
the notion of a descendant relation on a set of indices into the branch. Finally I
have formalized completeness of the system via a synthetic approach that has
previously only been applied to the unrestricted system.
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