A Cute Trick for Calculating Saturated Sets

Asta Halkjær From

Copenhagen Logic Gathering, 2023-03-17

The Scheme of Things

I have formalized completeness for five logics in Isabelle/HOL

- Propositional sequent calculus and tableau
- First-order and hybrid logic natural deduction
- Modal logic System K (axiomatic system)

The recipe:

- Build MCS with my generic, transfinite formalization of Lindenbaum's lemma
- Isabelle/HOL calculates the saturated set conditions for the logic
- Prove that the MCSs fulfil the conditions
- Profit

Saturated Sets

Saturated sets are saturated in both directions via *conditions* like:

$$p \rightarrow q \in H \quad \leftrightarrow \quad p \in H \text{ IMPLIES } q \in H \quad (*)$$

Membership equals satisfiability, so we can prove completeness:

- Build Maximal Consistent Sets (MCSs) using Lindenbaum's lemma
- Prove that any MCS is saturated
- Any non-derivable formula is then falsifiable (its negation is consistent)

But how exactly did we arrive at condition (*)

Semantics

Take propositional logic as a running example.

Syntax: falsity, propositional symbols, implication.

Semantic brackets lift the interpretation I to formulas p, q:

[[_]] ⊥	\leftrightarrow	False
[[I]] (‡ P)	\leftrightarrow	ΙP
$\llbracket I \rrbracket (p \rightarrow q)$	\leftrightarrow	[[I]] p → [[I]] q

(code from the Isabelle/HOL formalization)

Semics

Punch a hole in the sem[ant]ics, replacing the recursive call with rel:

Now we can express other properties based on subformulas.

Saturated Sets Redux

Saturated sets are saturated in both directions, e.g.:

 $p \rightarrow q \in H$ \leftrightarrow $p \in H \text{ IMPLIES } q \in H$

The connection between object-logical \rightarrow and meta-logical IMPLIES?

It is exactly the *semics*:

```
semics (hmodel H) (rel H) p \leftrightarrow rel H (hmodel H) p
```

Under the model induced by H, namely hmodel H, the relation rel H holds for the subformulas of p exactly when it holds for p.

Example

Take the usual term model:

hmodel $H \equiv \lambda P$. $\ddagger P \in H$ and rel $H = p = (p \in H)$

and the equation from before:

semics (hmodel H) (rel H) $p \leftrightarrow$ rel H (hmodel H) p

For each syntactic constructor, it reduces to a saturated set condition:

False	\leftrightarrow	$\bot \in H$
‡ P ∈ H	\leftrightarrow	‡ P ∈ H
$(p \in H \rightarrow q \in H)$	\leftrightarrow	$(p \rightarrow q \in H)$

First-Order Logic

Evaluate universal quantifiers by extending (3) the variable denotation E

semics (E, F, G) rel (\forall p) $\leftrightarrow \forall$ x. rel (x § E, F, G) p

The term model again:

hmodel H = (#, †, λP ts. $\ddagger P$ ts \in H)

We need to apply E as a substitution to account for p's context:

rel H (E, _, _) $p = (sub-fm \ E \ p \in H)$

The resulting saturated set condition:

 $(\forall x. \langle x \rangle p \in H) \leftrightarrow \forall p \in H$

Hybrid Logic I

Abridged semics:

semics (_, g, w) _ (·i) ↔ w = g i
semics (M, g, w) rel (�p) ↔ $\exists v \in R \ M \ w. rel (M, g, v) p
semics (M, g, _) rel (@i p) ↔ rel (M, g, g i) p$

We account for the context by labeling the formula p with the world i:

rel H (_, _, i) $p = ((i, p) \in H)$

Thus we calculate saturated sets of labeled formulas

Hybrid Logic II

The model is based on equivalence classes [i] of nominals where two nominals i and k are equivalent (wrt. H) when (i, $\cdot k$) \in H

The saturated set conditions become (for all **i**):

 $[\mathbf{i}] = [\mathbf{k}] \qquad \leftrightarrow \qquad ([\mathbf{i}], \cdot \mathbf{k}) \in \mathbf{H}$ $([\mathbf{k}], \mathbf{p}) \in \mathbf{H} \qquad \leftrightarrow \qquad ([\mathbf{i}], \mathbf{0}\mathbf{k} \mathbf{p}) \in \mathbf{H}$

 $(\exists v \in \text{reach H} [i]. (v, p) \in H) \leftrightarrow ([i], \Diamond p) \in H$

where reach H i = {[k] | (i, \diamondsuit k) \in H}

Future work: *Downwards* saturated sets (Hintikka)?

Need to consider each syntactic constructor and their negation:

 $\begin{array}{lll} p \rightarrow q \in H & \rightarrow & \neg p \in H \ OR \ q \in H \\ \neg (p \rightarrow q) \in H & \rightarrow & p \in H \ AND \ \neg q \in H \end{array}$

References:

Formalization in the Archive of Formal Proofs: <u>https://devel.isa-afp.org/entries/Synthetic_Completeness.html</u>

My PhD thesis: <u>https://people.compute.dtu.dk/ahfrom/ahfrom-thesis.pdf</u>