FIT - From's Isabelle Tutorial

Verification of Quicksort

Andreas Halkjær From

DTU Compute
Department of Applied Mathematics and Computer Science

Contents

- Introduction
- Data types
- Primitive recursion
- Our first proof
- Definitions
- Proof methods
- Our second proof
- Quicksort
- Formulation
- Multisets
- Permutation
- Sorted
- References

Section 1

Introduction

Source: isabelle.in.tum.de/overview.html:
Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus.

The main application is the formalization of mathematical proofs and in particular formal verification, which includes proving the correctness of computer hardware or software and proving properties of computer languages and protocols.

Introduction

Isabelle II

Isabelle/HOL includes powerful specification tools, e.g. for (co)datatypes, (co)inductive definitions and recursive functions with complex pattern matching.

Proofs are conducted in the structured proof language Isar, allowing for proof text naturally understandable for both humans and computers.

For proofs, Isabelle incorporates some tools to improve the user's productivity. In particular, Isabelle's classical reasoner can perform long chains of reasoning steps to prove formulas. The simplifier can reason with and about equations. Linear arithmetic facts are proved automatically, various algebraic decision procedures are provided. External first-order provers can be invoked through sledgehammer.

Slides

> Verified code has a grey background.
> These snippets are generated directly by Isabelle after verification.

Extra information, esp. proof state, has red names.

Commands are sometimes explained like this.

Cues for myself look like this.

Data types

Algebraic data types like Standard ML.

$$
\text { datatype mynat }=\text { Zero } \mid \text { Succ mynat }
$$

$$
\text { datatype 'a mylist }=\text { Nil | Cons 'a <'a mylist }
$$

Restrictions on recursive positions: e.g. recursion only allowed to the right of \Rightarrow.
No empty types ala:
datatype 'a stream = Cons 'a r'a streamı

Need codatatypes.

Primitive recursion

Recursion only allowed on direct arguments of constructor．

```
primrec plus :: <mynat }=>\mathrm{ mynat }=>\mathrm{ mynat` where
    <plus Zero m=m`
    | <plus (Succ n) m= Succ (plus n m)\rangle
```

primrec len :: 〈'a mylist \Rightarrow mynat〉 where
〈len Nil = Zero〉
$\mid\langle l e n($ Cons x xs $)=$ Succ (len xs)〉
primrec app :: 〈'a mylist \Rightarrow 'a mylist \Rightarrow 'a mylist where
$\langle a p p$ Nil ys = ys >
$\mid\langle a p p($ Cons x xs $) y s=$ Cons $x(a p p x s y s)\rangle$

Introduction

Our first proof I

We can state properties about the programs directly:

$$
\text { theorem len-app: 〈len }(a p p x s y s)=\text { plus (len xs) (len ys)〉 }
$$

$x s$ and $y s$ are automatically universally quantified.
Proof by induction:
proof (induct xs)

Splits the goal into a case for each constructor of $x s$.

$$
\begin{aligned}
& \text { Nil len (app Nil ys) = plus (len Nil) (len ys) } \\
& \text { Cons len (app (Cons } x \text { xs) ys) = plus (len (Cons } x \text { xs)) (len ys) }
\end{aligned}
$$

Introduction

Our first proof II (Nil)

?case len (app Nil ys) = plus (len Nil) (len ys)

Equational reasoning.

```
case Nil
have \len (app Nil ys) = len ys`
    by simp
also have <... = plus Zero (len ys)>
    by simp
also have <... = plus (len Nil) (len ys)>
    by simp
finally show ?case
    by simp
```

have states intermediary facts. also chains them together.
finally completes the chain.

Our first proof III (Cons)

```
?case len (app (Cons \(x\) xs) ys) \(=\) plus (len (Cons \(x\) xs)) (len ys)
    IH len (app xs ys) = plus (len xs) (len ys)
```

```
    case (Cons x xs)
    have \len (app (Cons x xs) ys) = len (Cons x (app xs ys))>
    by simp
    also have <... = Succ (len (app xs ys))>
    by simp
    also have <... = Succ (plus (len xs) (len ys))>
        using Cons by simp
```

 also have 〈... = plus (len (Cons x xs)) (len ys)〉
 by simp
 finally show ?case
 by \(\operatorname{simp}\)
 qed

Introduction

Our first proof IV

Alternatively:

```
theorem <len (app xs ys) = plus(len xs) (len ys)\
proof (induct xs)
    case Nil
    then show ?case
        by simp
next
    case (Cons x xs)
    then show ?case
        by simp
qed
```

Shorter:

```
theorem \len (app xs ys) = plus (len xs) (len ys)>
    by (induct xs) simp-all
```


Definitions

Definitions are non－recursive and introduce a layer of indirection．

$$
\begin{aligned}
& \text { definition double :: 〈mynat } \Rightarrow \text { mynat }\rangle \text { where } \\
& \text { 〈double } n \equiv \text { plus } n n\rangle
\end{aligned}
$$

Indirection removed by unfolding：

$$
\begin{aligned}
& \text { corollary 〈len }(a p p \times s \times s)=\text { double (len xs)〉 } \\
& \text { unfolding double-def by (simp add: len-app) }
\end{aligned}
$$

Alternatively：

$$
\begin{aligned}
& \text { corollary 〈len }(a p p \times s \text { xs })=\text { double (len xs) 〉 } \\
& \text { unfolding double-def using len-app by blast }
\end{aligned}
$$

using makes the stated fact（s）available to the proof method．

Proof methods I

Modify the proof state.
Some simple methods:
rule r, replace current goal with assumptions of r if its conclusion unifies with the goal.
".", abbreviation for "by this"
Used when the goal unifies directly with the stated fact (possibly after unfolding etc.).

Isabelle also includes automatic proof methods.

Proof methods II

simp, the simplifier, rewrites terms using various rules and contextual information.

- May loop.
- Functions, definitions, lemmas can give rise to rewrite rules ([simp] attribute). auto combines the simplifier with classical reasoning among other things.

```
lemma <(xs = app xs ys) = (ys=Nil)>
    by (induct xs) auto
```

force performs a "rather exhaustive search" using "many fancy proof tools"
theorem Cantor: $\langle\nexists f::$ nat \Rightarrow nat set. $\forall A . \exists x . f x=A$ 〉
by force

Proof methods III

blast is a classical tableau prover.

- Does not use the simplifier.
- Written to be very fast.
- Proof is reconstructed in Isabelle afterwards.

If everyone that is not rich has a rich father, then some rich person must have a rich grandfather.

$$
\begin{aligned}
& \text { lemma }\langle(\forall x .(\neg r(x) \longrightarrow r(f(x)))) \longrightarrow(\exists x .(r(x) \wedge r(f(f(x)))))\rangle \\
& \text { by blast }
\end{aligned}
$$

Proof methods IV

fast uses sequent-style proving.

- Breadth-first search strategy.
- Constructs an Isabelle proof directly.
- fastforce combines it with the simplifier.

Any list built by concatenating another one with itself has even length.

$$
\begin{aligned}
& \text { lemma }\langle\forall x s \in A . \exists y s . x s=\text { app ys ys } \Longrightarrow u s \in A \Longrightarrow \\
& \quad \exists n . \text { len us }=\text { plus } n n\rangle \\
& \text { using len-app by fast }
\end{aligned}
$$

blast and fast use classical reasoning, iprover uses only intuitionistic logic.

Proof methods V

metis implements ordered paramodulation.

- Very powerful.
- Does not use the simplifier.

If a number acts as the identity for plus, it must be zero.

$$
\begin{aligned}
& \text { lemma }\langle\forall x . \text { plus } x y=x \Longrightarrow y=\text { Zero } \\
& \text { using } \operatorname{plus.\operatorname {simps}(1)\text {bymetis}}
\end{aligned}
$$

A suitable proof method can be found with try0.

Reverse a list in linear time in the size of the list：

```
primrec rev' :: <'a mylist = 'a mylist }=>\mathrm{ 'a mylist> where
    <rev' Nil acc = acc>
    | \langlerev' (Cons x xs) acc = rev' xs (Cons x acc)\rangle
```

Hide details of accumulator behind a definition：
definition rev ：：〈＇a mylist \Rightarrow＇a mylist〉 where $\langle r e v x s=r e v\rangle$ xs Nil〉

Our second proof II

Goal: Prove the length is preserved. First attempt:

```
lemma <len (rev xs) = len xs>
proof (induct xs)
    case Nil
    then show ?case
        unfolding rev-def by simp
next
```

```
    case (Cons x xs)
    have \len (rev (Cons x xs)) = len (rev'(Cons x xs) Nil)\
        unfolding rev-def by blast
    also have <. . . = len (rev' xs (Cons x Nil))>
        by simp
    show ?case sorry
qed
```

 IH len (rev xs) = len xs
 unfolded len (rev' xs Nil) = len xs

Our second proof III

We need to apply the induction hypothesis to an arbitrary accumulator. Second attempt:

```
lemma <len (rev' xs acc) = plus(len xs) (len acc)>
proof (induct xs arbitrary: acc)
```

 case Nil
 then show ?case
 by simp
 next

```
?case len (rev' (Cons x xs) acc) = plus (len (Cons x xs) (len acc)
    IH len (rev' xs ?acc) = plus (len xs) (len ?acc)
```

```
case (Cons x xs)
```

case (Cons x xs)
have <len (rev'(Cons x xs) acc) = len (rev' xs (Cons x acc))>
have <len (rev'(Cons x xs) acc) = len (rev' xs (Cons x acc))>
by simp
by simp
also have <... = plus (len xs) (len (Cons x acc))>
also have <... = plus (len xs) (len (Cons x acc))>
using Cons by blast

```
    using Cons by blast
```

Cons x is in the wrong place. . Rewrite:

```
    also have <... = Succ (plus (len xs) (len acc))>
    by (induct xs) simp-all
    also have <... = plus (len (Cons x xs)) (len acc)>
    by simp
    finally show ?case.
qed
```


Our second proof V

Simplifier rule:

```
lemma plus-right-succ [simp]:
    <plus n (Succ m) = Succ (plus n m)>
    by (induct n) simp-all
```

Automatic proof:

```
lemma len-rev': <len (rev' xs acc) = plus (len xs) (len acc)\
    by (induct xs arbitrary: acc) simp-all
```


Our second proof VI

Another fact about addition:

$$
\begin{aligned}
& \text { lemma plus-right-zero }[\text { simp }]:\langle\text { plus } n \text { Zero }=n\rangle \\
& \text { by (induct } n \text {) simp-all }
\end{aligned}
$$

Finally we can relate it to the definition:
lemma len-rev: 〈len $(r e v x s)=$ len xs〉 unfolding rev-def by (simp add: len-rev')

Section 2

Quicksort

Simple functional version

Given an input list l. If l is empty it is already sorted. Otherwise l has shape $x \# x s$:
(1) Split $x s$ into $a s$ and $z s$ where

- $\forall a \in \operatorname{set}$ as. $a \leq x$
- $\forall z \in$ set $z s . x<z$.
(2) Recursively sort as and $z s$ into $a s^{\prime}$ and $z s^{\prime}$
(3) Return $a s^{\prime} @ x \# z s^{\prime}$
where @ appends two lists.

Termination: Base case is covered and as and $z s$ are strictly smaller than l so the recursion is well-founded.

Isabelle formulation I

I will show the entire theory, in order, here.

> theory Quicksort imports HOL-Library.Multiset begin

> abbreviation le :: «('a::linorder) \Rightarrow ' $a \Rightarrow$ bool where $\langle l e x y \equiv y \leq x\rangle$

Intended for partial application:
Predicate le x holds for all elements less than or equal to x.

Isabelle formulation II

```
fun quicksort :: 〈('a::linorder) list \(\Rightarrow\) 'a list〉 where
    〈quicksort [] = []〉
| <quicksort ( \(x \#\) xs) \(=\)
    (let \((a s, z s)=\) partition (le \(x) x s\)
    in quicksort as @ x \# quicksort zs) >
```

Termination automatically proven．

Unit test

$$
\begin{aligned}
& \text { lemma 〈quicksort }[8,1,5,2,0,9,1,4:: \text { int }]=[0,1,1,2,4,5,8,9] \text { 〉 } \\
& \text { by eval }
\end{aligned}
$$

Goal

Properties for sort
properties_for_sort: mset ?ys $=$ mset ?xs \Longrightarrow sorted ?ys \Longrightarrow sort ?xs $=$?ys
where ?ys = quicksort ?xs

So, proving for all $x s$:
Permutation mset (quicksort xs) $=$ mset xs
Sorting sorted (quicksort xs)

Gives us a proof that
sort xs = quicksort xs

Multisets

Unordered collections of elements, e.g.:

$$
\begin{gathered}
\{a, a, b\}=\{a, b, a\} \\
\{a, a, b\} \neq\{a, b\}
\end{gathered}
$$

Also known as bags.

Library support in Isabelle:
$(+)::$ 'a multiset \Rightarrow 'a multiset \Rightarrow 'a multiset
mset :: 'a list \Rightarrow 'a multiset
set-mset :: 'a multiset \Rightarrow 'a set
set-mset-mset: set-mset (mset ? $\times s$) $=$ set ? \times s

Permutation I

Induction over the recursive calls by the algorithm:

```
lemma quicksort-permutes [simp]:
    <mset (quicksort xs) = mset xs)
proof (induct xs rule: quicksort.induct)
```

?case (1) mset (quicksort []) = mset []
case 1
show ?case by simp
next
?case (2) mset (quicksort (x \# xs)) $=$ mset (x \# xs)
$\mathrm{IH}(\mathrm{as})(\mathrm{as}, \mathrm{zs})=$ partition $(l e x) x s \Longrightarrow$ mset (quicksort as) $=$ mset as
$\mathrm{IH}(\mathrm{zs})(a s, z s)=$ partition $(l e x) x s \Longrightarrow$ mset (quicksort $z s)=$ mset zs
Compare to mset (quicksort xs) $=$ mset $x s$

Difficult to relate to $a s$ and $z s$.

Permutation III

?case (2) mset (quicksort ($x \#$ xs)) $=\operatorname{mset}(x \# x s)$

```
case (2xxs)
moreover obtain as zs where <(as, zs) = partition (le x) xs)
    by simp
```

 moreover from this have \(\langle m s e t\) as \(+m s e t z s=m s e t x s\rangle\)
 by (induct xs arbitrary: as zs) simp-all
 ultimately show ?case
 by \(\operatorname{simp}\)
 qed
from includes facts by name while moreover accumulates them until ultimately uses them. obtain eliminates an existential.

Permutation IV

Corollary for regular sets:

$$
\begin{aligned}
& \text { corollary set-quicksort }[\text { simp }] \text { : 〈set (quicksort xs) }=\text { set xs〉 } \\
& \text { using quicksort-permutes set-mset-mset by metis }
\end{aligned}
$$

Question of what to add to the simplifier. Balance:

- Clutter at use-site.
- Justification of proof steps.
- Dependency visibility.

Sorted I

Proof by induction over recursive calls again:

> lemma quicksort-sorts [simp]: (sorted (quicksort xs)) proof (induct xs rule: quicksort.induct)

?case (1) sorted (quicksort [])

```
case 1
show ?case by simp
next
```

The empty case is trivial.
Hurray for the simplifier figuring out the details.

Sorted II

?case (2) sorted (quicksort (x \# xs))

```
case (2 x xs)
obtain as zs where *:〈(as, zs) = partition (le x) xs>
    by simp
then have
    \forall a set (quicksort as). \forallz\in set (x# quicksort zs). a \leq z>
    by fastforce
    then have <sorted (quicksort as @ x # quicksort zs)>
    using * 2 set-quicksort
    by (metis linear partition-P sorted-Cons sorted-append)
    then show ?case
    using * by simp
qed
```

then \equiv from this.
sledgehammer can find the metis proof.

$$
\text { ext: }(\wedge x . ? f x=? g x) \Longrightarrow ? f=? g
$$

theorem sort-quicksort: 〈sort = quicksort〉
using properties-for-sort by (rule ext) simp-all

Thank you

end

Questions?

References:

- The Isabelle/Isar Reference Manual, Makarius Wenzel
- Miscellaneous Isabelle/Isar examples, Makarius Wenzel
- Defining Recursive Functions in Isabelle/HOL, Alexander Krauss

Thanks to Jørgen Villadsen for help refining the quicksort example and to him, Anders Schlichtkrull and John Bruntse Larsen for feedback on a written version of this talk.

