
FIT - From’s Isabelle Tutorial

Verification of Quicksort

Andreas Halkjær From

Contents

• Introduction
• Data types
• Primitive recursion
• Our first proof
• Definitions
• Proof methods
• Our second proof

• Quicksort
• Formulation
• Multisets
• Permutation
• Sorted
• References

2 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Section 1

Introduction

3 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Isabelle I

Source: isabelle.in.tum.de/overview.html:
Isabelle is a generic proof assistant. It allows mathematical formulas

to be expressed in a formal language and provides tools for proving
those formulas in a logical calculus.

The main application is the formalization of mathematical proofs
and in particular formal verification, which includes proving the
correctness of computer hardware or software and proving
properties of computer languages and protocols.

4 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

isabelle.in.tum.de/overview.html

Introduction
Isabelle II

5 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Isabelle III

Isabelle/HOL includes powerful specification tools, e.g. for
(co)datatypes, (co)inductive definitions and recursive functions with
complex pattern matching.

Proofs are conducted in the structured proof language Isar, allowing
for proof text naturally understandable for both humans and computers.

For proofs, Isabelle incorporates some tools to improve the user’s
productivity. In particular, Isabelle’s classical reasoner can perform long
chains of reasoning steps to prove formulas. The simplifier can reason
with and about equations. Linear arithmetic facts are proved
automatically, various algebraic decision procedures are provided.
External first-order provers can be invoked through sledgehammer.

6 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Slides

Verified code has a grey background.
These snippets are generated directly by Isabelle after ver-
ification.

Extra information , esp. proof state, has red names.

Commands are sometimes explained like this.

Cues for myself look like this.

7 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Data types

Algebraic data types like Standard ML.

datatype mynat = Zero | Succ mynat

datatype ′a mylist = Nil | Cons ′a 〈 ′a mylist〉

Restrictions on recursive positions: e.g. recursion only allowed to the right
of ⇒.
No empty types ala:
datatype ’a stream = Cons ’a ‹’a stream›

Need codatatypes.

8 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Primitive recursion

Recursion only allowed on direct arguments of constructor.
primrec plus :: 〈mynat ⇒ mynat ⇒ mynat〉 where

〈plus Zero m = m〉

| 〈plus (Succ n) m = Succ (plus n m)〉

primrec len :: 〈 ′a mylist ⇒ mynat〉 where
〈len Nil = Zero〉

| 〈len (Cons x xs) = Succ (len xs)〉

primrec app :: 〈 ′a mylist ⇒ ′a mylist ⇒ ′a mylist〉 where
〈app Nil ys = ys〉

| 〈app (Cons x xs) ys = Cons x (app xs ys)〉

9 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our first proof I

We can state properties about the programs directly:
theorem len-app: 〈len (app xs ys) = plus (len xs) (len ys)〉

xs and ys are automatically universally quantified.
Proof by induction:

proof (induct xs)

Splits the goal into a case for each constructor of xs.
Nil len (app Nil ys) = plus (len Nil) (len ys)

Cons len (app (Cons x xs) ys) = plus (len (Cons x xs)) (len ys)

10 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our first proof II (Nil)

?case len (app Nil ys) = plus (len Nil) (len ys)

Equational reasoning.
case Nil
have 〈len (app Nil ys) = len ys〉

by simp
also have 〈. . . = plus Zero (len ys)〉

by simp
also have 〈. . . = plus (len Nil) (len ys)〉

by simp
finally show ?case
by simp

have states intermediary facts.
also chains them together.
finally completes the chain.

11 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our first proof III (Cons)

?case len (app (Cons x xs) ys) = plus (len (Cons x xs)) (len ys)
IH len (app xs ys) = plus (len xs) (len ys)

case (Cons x xs)
have 〈len (app (Cons x xs) ys) = len (Cons x (app xs ys))〉

by simp
also have 〈. . . = Succ (len (app xs ys))〉

by simp
also have 〈. . . = Succ (plus (len xs) (len ys))〉

using Cons by simp

also have 〈. . . = plus (len (Cons x xs)) (len ys)〉

by simp
finally show ?case
by simp

qed

12 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our first proof IV

Alternatively:
theorem 〈len (app xs ys) = plus (len xs) (len ys)〉

proof (induct xs)
case Nil
then show ?case
by simp

next
case (Cons x xs)
then show ?case
by simp

qed

Shorter:
theorem 〈len (app xs ys) = plus (len xs) (len ys)〉

by (induct xs) simp-all

13 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Definitions

Definitions are non-recursive and introduce a layer of indirection.
definition double :: 〈mynat ⇒ mynat〉 where

〈double n ≡ plus n n〉

Indirection removed by unfolding:
corollary 〈len (app xs xs) = double (len xs)〉

unfolding double-def by (simp add: len-app)

Alternatively:
corollary 〈len (app xs xs) = double (len xs)〉

unfolding double-def using len-app by blast

using makes the stated fact(s) available to the proof method.

14 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Proof methods I

Modify the proof state.
Some simple methods:

rule r, replace current goal with assumptions of r if its conclusion unifies
with the goal.

“.”, abbreviation for “by this”
Used when the goal unifies directly with the stated fact (possibly after
unfolding etc.).

Isabelle also includes automatic proof methods.

15 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Proof methods II

simp, the simplifier, rewrites terms using various rules and contextual
information.

• May loop.
• Functions, definitions, lemmas can give rise to rewrite rules ([simp] attribute).

auto combines the simplifier with classical reasoning among other things.
lemma 〈(xs = app xs ys) = (ys = Nil)〉

by (induct xs) auto

force performs a “rather exhaustive search” using “many fancy proof tools”
theorem Cantor: 〈@ f :: nat ⇒ nat set. ∀A. ∃ x. f x = A〉

by force

16 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Proof methods III

blast is a classical tableau prover.

• Does not use the simplifier.
• Written to be very fast.
• Proof is reconstructed in Isabelle afterwards.

If everyone that is not rich has a rich father, then some rich person
must have a rich grandfather.

lemma 〈(∀ x. (¬ r(x) −→ r(f(x)))) −→ (∃ x. (r(x) ∧ r(f(f(x)))))〉

by blast

17 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Proof methods IV

fast uses sequent-style proving.

• Breadth-first search strategy.
• Constructs an Isabelle proof directly.
• fastforce combines it with the simplifier.

Any list built by concatenating another one with itself has even
length.

lemma 〈∀ xs ∈ A. ∃ ys. xs = app ys ys =⇒ us ∈ A =⇒
∃ n. len us = plus n n〉

using len-app by fast

blast and fast use classical reasoning, iprover uses only intuitionistic logic.

18 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Proof methods V

metis implements ordered paramodulation.

• Very powerful.
• Does not use the simplifier.

If a number acts as the identity for plus, it must be zero.

lemma 〈∀ x. plus x y = x =⇒ y = Zero〉

using plus.simps(1) by metis

A suitable proof method can be found with try0.

19 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof I

Reverse a list in linear time in the size of the list:
primrec rev ′ :: 〈 ′a mylist ⇒ ′a mylist ⇒ ′a mylist〉 where

〈rev ′ Nil acc = acc〉

| 〈rev ′ (Cons x xs) acc = rev ′ xs (Cons x acc)〉

Hide details of accumulator behind a definition:
definition rev :: 〈 ′a mylist ⇒ ′a mylist〉 where

〈rev xs = rev ′ xs Nil〉

20 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof II
Goal: Prove the length is preserved. First attempt:

lemma 〈len (rev xs) = len xs〉

proof (induct xs)
case Nil
then show ?case
unfolding rev-def by simp

next

case (Cons x xs)
have 〈len (rev (Cons x xs)) = len (rev ′ (Cons x xs) Nil)〉

unfolding rev-def by blast
also have 〈. . . = len (rev ′ xs (Cons x Nil))〉

by simp
show ?case sorry

qed

IH len (rev xs) = len xs
unfolded len (rev’ xs Nil) = len xs

21 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof III

We need to apply the induction hypothesis to an arbitrary accumulator.
Second attempt:

lemma 〈len (rev ′ xs acc) = plus (len xs) (len acc)〉

proof (induct xs arbitrary: acc)

case Nil
then show ?case
by simp

next

22 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof IV

?case len (rev’ (Cons x xs) acc) = plus (len (Cons x xs) (len acc)
IH len (rev’ xs ?acc) = plus (len xs) (len ?acc)

case (Cons x xs)
have 〈len (rev ′ (Cons x xs) acc) = len (rev ′ xs (Cons x acc))〉

by simp
also have 〈. . . = plus (len xs) (len (Cons x acc))〉

using Cons by blast

Cons x is in the wrong place. . . Rewrite:
also have 〈. . . = Succ (plus (len xs) (len acc))〉

by (induct xs) simp-all
also have 〈. . . = plus (len (Cons x xs)) (len acc)〉

by simp
finally show ?case .

qed

23 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof V

Simplifier rule:
lemma plus-right-succ [simp]:

〈plus n (Succ m) = Succ (plus n m)〉

by (induct n) simp-all

Automatic proof:
lemma len-rev ′: 〈len (rev ′ xs acc) = plus (len xs) (len acc)〉

by (induct xs arbitrary: acc) simp-all

24 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Introduction
Our second proof VI

Another fact about addition:
lemma plus-right-zero [simp]: 〈plus n Zero = n〉

by (induct n) simp-all

Finally we can relate it to the definition:
lemma len-rev: 〈len (rev xs) = len xs〉

unfolding rev-def by (simp add: len-rev ′)

25 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Section 2

Quicksort

26 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Simple functional version

Given an input list l. If l is empty it is already sorted. Otherwise l has
shape x # xs:

1 Split xs into as and zs where
• ∀a ∈ set as. a ≤ x
• ∀z ∈ set zs. x < z.

2 Recursively sort as and zs into as′ and zs′

3 Return as′ @ x # zs′

where @ appends two lists.

Termination: Base case is covered and as and zs are strictly smaller than l
so the recursion is well-founded.

27 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Isabelle formulation I

I will show the entire theory, in order, here.
theory Quicksort imports HOL−Library.Multiset begin

abbreviation le :: 〈(′a::linorder) ⇒ ′a ⇒ bool〉 where
〈le x y ≡ y ≤ x〉

Intended for partial application:
Predicate le x holds for all elements less than or equal to x.

28 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Isabelle formulation II

fun quicksort :: 〈(′a::linorder) list ⇒ ′a list〉 where
〈quicksort [] = []〉

| 〈quicksort (x # xs) =
(let (as, zs) = partition (le x) xs
in quicksort as @ x # quicksort zs)〉

Termination automatically proven.

Unit test

lemma 〈quicksort [8,1,5,2,0,9,1,4 :: int] = [0,1,1,2,4,5,8,9]〉

by eval

29 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Goal

Properties for sort

properties_for_sort: mset ?ys = mset ?xs =⇒ sorted ?ys =⇒ sort ?xs = ?ys

where ?ys = quicksort ?xs

So, proving for all xs:
Permutation mset (quicksort xs) = mset xs

Sorting sorted (quicksort xs)

Gives us a proof that
sort xs = quicksort xs

30 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Multisets

Unordered collections of elements, e.g.:

{a, a, b} = {a, b, a}

{a, a, b} 6= {a, b}

Also known as bags.

Library support in Isabelle:
(+) :: ’a multiset ⇒ ’a multiset ⇒ ’a multiset
mset :: ’a list ⇒ ’a multiset

set-mset :: ’a multiset ⇒ ’a set
set-mset-mset: set-mset (mset ?xs) = set ?xs

31 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Permutation I

Induction over the recursive calls by the algorithm:
lemma quicksort-permutes [simp]:

〈mset (quicksort xs) = mset xs〉

proof (induct xs rule: quicksort.induct)

?case (1) mset (quicksort []) = mset []

case 1
show ?case by simp

next

32 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Permutation II

?case (2) mset (quicksort (x # xs)) = mset (x # xs)
IH (as) (as,zs) = partition (le x) xs =⇒ mset (quicksort as) = mset as
IH (zs) (as,zs) = partition (le x) xs =⇒ mset (quicksort zs) = mset zs

Compare to
mset (quicksort xs) = mset xs

Difficult to relate to as and zs.

33 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Permutation III

?case (2) mset (quicksort (x # xs)) = mset (x # xs)

case (2 x xs)
moreover obtain as zs where 〈(as, zs) = partition (le x) xs〉

by simp

moreover from this have 〈mset as + mset zs = mset xs〉

by (induct xs arbitrary: as zs) simp-all
ultimately show ?case
by simp

qed

from includes facts by name while
moreover accumulates them until
ultimately uses them.
obtain eliminates an existential.

34 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Permutation IV

Corollary for regular sets:
corollary set-quicksort [simp]: 〈set (quicksort xs) = set xs〉

using quicksort-permutes set-mset-mset by metis

Question of what to add to the simplifier. Balance:

• Clutter at use-site.
• Justification of proof steps.
• Dependency visibility.

35 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Sorted I

Proof by induction over recursive calls again:
lemma quicksort-sorts [simp]: 〈sorted (quicksort xs)〉

proof (induct xs rule: quicksort.induct)

?case (1) sorted (quicksort [])

case 1
show ?case by simp

next

The empty case is trivial.
Hurray for the simplifier figuring out the details.

36 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Sorted II

?case (2) sorted (quicksort (x # xs))

case (2 x xs)
obtain as zs where ∗: 〈(as, zs) = partition (le x) xs〉

by simp
then have

〈∀ a ∈ set (quicksort as). ∀ z ∈ set (x # quicksort zs). a ≤ z〉

by fastforce

then have 〈sorted (quicksort as @ x # quicksort zs)〉

using ∗ 2 set-quicksort
by (metis linear partition-P sorted-Cons sorted-append)

then show ?case
using ∗ by simp

qed

then ≡ from this.
sledgehammer can find the metis proof.
37 DTU Compute FIT - From’s Isabelle Tutorial 12 October

2017

Quicksort
Sorted III

ext: (∧x. ?f x = ?g x) =⇒ ?f = ?g

theorem sort-quicksort: 〈sort = quicksort〉

using properties-for-sort by (rule ext) simp-all

38 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

Quicksort
Thank you

end

Questions?

References:

• The Isabelle/Isar Reference Manual, Makarius Wenzel
• Miscellaneous Isabelle/Isar examples, Makarius Wenzel
• Defining Recursive Functions in Isabelle/HOL, Alexander Krauss

Thanks to Jørgen Villadsen for help refining the quicksort example and to
him, Anders Schlichtkrull and John Bruntse Larsen for feedback on a
written version of this talk.

39 DTU Compute FIT - From’s Isabelle Tutorial 12 October
2017

	Introduction
	Data types
	Primitive recursion
	Our first proof
	Definitions
	Proof methods
	Our second proof

	Quicksort
	Formulation
	Multisets
	Permutation
	Sorted
	References

