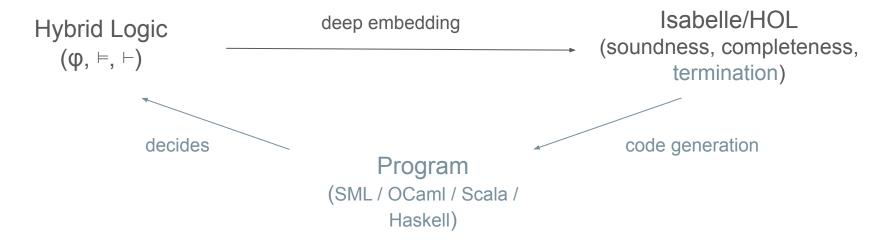
On Termination for Hybrid Tableaux

Asta Halkjær From, PhD student Technical University of Denmark (DTU Compute)

Introduction

Tableau system ST^A for basic hybrid logic (4900+ lines in AFP): https://isa-afp.org/entries/Hybrid_Logic.html

Based on ST* by Blackburn, Bolander, Braüner and Jørgensen.



Modal Logic

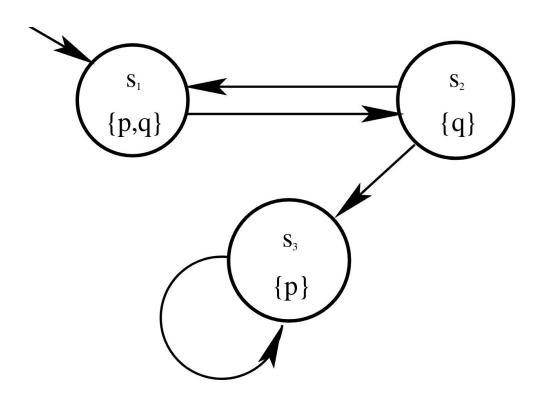
Talks about relational structures

- People
- Program states
- Possible worlds

- ...

♦, □ modalities see relations

How do we talk about points?



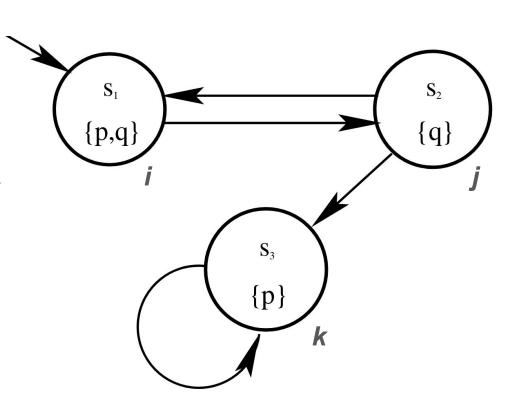
Hybrid Logic

Introduce second sort of propositional symbols

Nominals *i*, *j*, *k* name worlds

Satisfaction operator \bigotimes_{k} "jumps" to k

Now we can prove ◊φ by proving ◊i and @_i φ for some nominal i (cf. ∃



Syntax and Semantics

$$\phi, \psi ::= p \mid i \mid \neg \phi \mid \phi \lor \psi \mid \Diamond \phi \mid @_i \phi$$

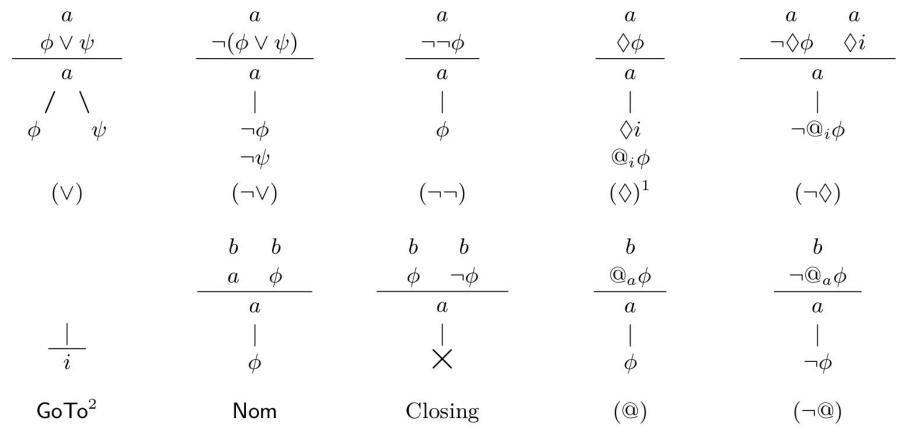
Kripke model ((W, R), V) and assignment g.

W: underlying set, R: binary relation, V: unary relation, g: map from nominals to worlds.

$$\begin{array}{lll} \mathfrak{M},g,w\models p & \text{iff} & w\in V(p)\\ \mathfrak{M},g,w\models i & \text{iff} & g(i)=w\\ \mathfrak{M},g,w\models \neg \phi & \text{iff} & \mathfrak{M},g,w\not\models \phi\\ \mathfrak{M},g,w\models \phi\vee \psi & \text{iff} & \mathfrak{M},g,w\models \phi \text{ or } \mathfrak{M},g,w\models \psi\\ \mathfrak{M},g,w\models \Diamond \phi & \text{iff} & \text{for some } w',wRw' \text{ and } \mathfrak{M},g,w'\models \phi\\ \mathfrak{M},g,w\models @_i\phi & \text{iff} & \mathfrak{M},g,g(i)\models \phi \end{array}$$

Seligman-Style Tableau

Divide branches into blocks Each block starts with a nominal The remaining formulas are true at (@) that nominal Explicitly open a new block to switch world



In (♦) nominal a generates i

Restrictions

Don't apply rules ad infinitum (hopefully)

Requirement: simple to formalize

- **S1** The output of a non-GoTo rule must include a formula new to the current block type.
- **S2** The (\lozenge) rule can only be applied to input $\lozenge \phi$ on an a-block if $\lozenge \phi$ is not already witnessed at a by formulas $\lozenge i$ and $@_i \phi$ for some witnessing nominal i.
- **S3** We associate *potential*, a natural number n, with each line in the tableau. GoTo must decrement the number, the other rules increment it and we may start from any amount.
- **S4** We parameterize the proof system by a fixed set of nominals A and impose the following:
 - **a.** The nominal introduced by the (\lozenge) rule is not in A.
 - **b.** For any nominal i, Nom only applies to a formula $\phi = i$ or $\phi = \Diamond i$ when $i \in A$.

Example Tableau

Start from refuted formula (1) (at arbitrary nominal (0))

Derive conclusions (2-7)

Search for contradictions (6+7)

We see [potential] restrict **GoTo**

0.	a		
1.	$\neg(\neg@_i\phi\vee@_i\phi)$		[0
2.	$\neg\neg@_i\phi$	$(\neg \lor) 1$	[1
3.	$\neg @_i \phi$	$(\neg \lor) 1$	[1
4.	$@_i\phi$	$(\neg\neg)$ 2	[2
5.	i	GoTo	[1
6.	$ eg \phi$	$(\neg @) 3$	[2
7.	ϕ	$(@) \ 4$	[3
	\times		

In Isabelle/HOL

Blocks are pointed lists, branches are lists of blocks:

Tableau Trees I

Need to model the *process* of building a tableau

```
codatatype (labels: 'a) tree = Node (getLabel: 'a) (getSubs: <'a tree list>)
These can have infinite paths:

coinductive ipath :: <'a tree ⇒ 'a stream ⇒ bool> where

IPath: <s ∈ set subs ⇒ ipath s tail ⇒ ipath (Node l subs) (l ## tail)>
```

I use a small language of relational properties

Tableau Trees II

Interpret the language on both trees and paths (streams):

```
relt :: ⟨'a rel ⇒ 'a tree ⇒ bool⟩
rels :: ⟨'a rel ⇒ 'a stream ⇒ bool⟩
```

For instance:

```
<relt (Next r) t = (∀s ∈ set (getSubs t). relt r s) >
<rels (Next r) = nxt (rels r) >
```

Relational properties are inherited by infinite paths:

```
lemma relt_ipath: assumes < relt r t> <ipath t s> shows < rels r s>
```

Tableau Trees III

Tag each kind of rule application:

A tableau is a tree of steps (tag, potential, branch prefix):

```
datatype ('a, 'b) step = Step
  (getTag: <('a, 'b) tag>) (getPotential: nat) (getBranch: <('a, 'b) branch>)

type_synonym ('a, 'b) tableau = <('a, 'b) step tree>
```

Tableau Trees IV

Only some of these trees are well formed:

Essentially the Neg rule from the inductive predicate A, $n \vdash b$.

Preliminary Results

An infinite path in a well formed tree must generate infinitely many nominals:

```
theorem infinite_generated:
   assumes <wft A tab > <ipath tab steps >
   shows <infinite (generated_ipath steps) >
```

Any fixed nominal (here a) only generates finitely many nominals:

```
theorem generated_bound:
   assumes <wft A tab > <ipath tab steps >
   shows <finite {(a, i) |p i. Fresh a p i ∈ getTag ` sset steps} >
```

Lots of work using the newness, (◊) restrictions etc.

Missing Results

Application of König's lemma:

existing results imply an infinite chain of nominals generating each other

Crucially, the measure technique of Bolander and Blackburn:

- when *i* generates *j*, the formulas on *j*-blocks are smaller than those on *i*-blocks (due to restrictions on the copying Nom rule)
- formula sizes cannot decrease infinitely
- so such a chain actually cannot exist
- and there can be no infinite paths in a well formed tableau

Trouble

Formalizing the key lemma of the measure technique in Isabelle/HOL

- when *i* generates *j*, the formulas on *j*-blocks are smaller than those on *i*-blocks (due to restrictions on the copying Nom rule)

Difficult to reconcile this *global* view of a tableau with the coinduction principle

If anyone has any ideas, pull requests are *very* welcome ;-)

https://github.com/astahfrom/hybrid_termination

References

Blackburn, P. (2000). Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL, 8(3), 339-365.

Bolander, T., & Blackburn, P. (2007). Termination for hybrid tableaus. Journal of Logic and Computation, 17(3), 517-554.

Jørgensen, K. F., Blackburn, P. R., Bolander, T., & Braüner, T. (2016). Synthetic Completeness Proofs for Seligman-style Tableau Systems. In L. Beklemishev, S. Demri, & A. Máté (Eds.), Proceedings of Advances in Modal Logic 2016 (Vol. 11, pp. 302-321). College Publications.

From, A. H. (2021). Synthetic Completeness for a Terminating Seligman-Style Tableau System. In 26th International Conference on Types for Proofs and Programs (TYPES 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

https://github.com/astahfrom/hybrid_termination