
On Termination for
Hybrid Tableaux

Asta Halkjær From, PhD student
Technical University of Denmark (DTU Compute)



Introduction

Tableau system STA for basic hybrid logic (4900+ lines in AFP):
https://isa-afp.org/entries/Hybrid_Logic.html

Based on ST* by Blackburn, Bolander, Braüner and Jørgensen.

Hybrid Logic
(φ, ⊨, ⊢)

Isabelle/HOL
(soundness, completeness, 

termination)

deep embedding

Program
(SML / OCaml / Scala / 

Haskell)

code generationdecides

https://isa-afp.org/entries/Hybrid_Logic.html


Modal Logic

Talks about relational structures
- People
- Program states
- Possible worlds
- …

◊, □ modalities see relations

How do we talk about points?
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Hybrid Logic

Introduce second sort of
propositional symbols

Nominals i, j, k name worlds

Satisfaction operator @k “jumps” to k

Now we can prove ◊φ by proving
◊i and @i φ for some nominal i (cf. ∃)

i j

k
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Syntax and Semantics

Kripke model ((W, R), V) and assignment g.
W: underlying set, R: binary relation, V: unary relation, g: map from nominals to worlds.
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Seligman-Style Tableau

Divide branches into blocks

Each block starts with a nominal
The remaining formulas are true at (@) that nominal

Explicitly open a new block to switch world
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7In (◊) nominal a generates i



Restrictions

Don’t apply rules ad infinitum (hopefully)

Requirement: simple to formalize

8



Example Tableau

Start from refuted formula (1)
(at arbitrary nominal (0))

Derive conclusions (2-7)

Search for contradictions (6+7)

We see [potential] restrict GoTo
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In Isabelle/HOL

Blocks are pointed lists, branches are lists of blocks:

type_synonym ('a, 'b) block = ‹('a, 'b) fm list × 'b›
type_synonym ('a, 'b) branch = ‹('a, 'b) block list›

Inductive predicate A, n ⊢ b: branch b closes under nominal set A, potential n

| Neg:
‹(¬ ¬ p) at a in (ps, a) # branch ⟹
new p a ((ps, a) # branch) ⟹
A, Suc n ⊢ (p # ps, a) # branch ⟹
A, n ⊢ (ps, a) # branch›
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Tableau Trees I

Need to model the process of building a tableau
codatatype (labels: 'a) tree = Node (getLabel: 'a) (getSubs: ‹'a tree list›)

These can have infinite paths:
coinductive ipath :: ‹'a tree ⇒ 'a stream ⇒ bool› where
  IPath: ‹s ∈ set subs ⟹ ipath s tail ⟹ ipath (Node l subs) (l ## tail)›

I use a small language of relational properties
datatype 'a rel
  = Here ‹'a ⇒ bool›
  | Next ‹'a rel›
  | Impl ‹'a ⇒ bool› ‹'a rel›



Tableau Trees II

Interpret the language on both trees and paths (streams):

relt :: ‹'a rel ⇒ 'a tree ⇒ bool›
rels :: ‹'a rel ⇒ 'a stream ⇒ bool›

For instance:

‹relt (Next r) t = (∀s ∈ set (getSubs t). relt r s)›
‹rels (Next r) = nxt (rels r)›

Relational properties are inherited by infinite paths:
lemma relt_ipath: assumes ‹relt r t› ‹ipath t s› shows ‹rels r s›



Tableau Trees III

Tag each kind of rule application:
datatype ('a, 'b) tag
  = Close 'b ‹('a, 'b) fm›
  | Open
  | Block 'b
  | Rule 'b ‹('a, 'b) fm list list›
  | Fresh 'b ‹('a, 'b) fm› 'b

A tableau is a tree of steps (tag, potential, branch prefix):
datatype ('a, 'b) step = Step
 (getTag: ‹('a, 'b) tag›) (getPotential: nat) (getBranch: ‹('a, 'b) branch›)

type_synonym ('a, 'b) tableau = ‹('a, 'b) step tree›



Tableau Trees IV

Only some of these trees are well formed:

coinductive wft :: ‹'b set ⇒ ('a, 'b) tableau ⇒ bool› for A :: ‹'b set› 
where
  | WfNeg:

‹(¬ ¬ p) at a in (ps, a) # branch ⟹
new p a ((ps, a) # branch) ⟹
getBranch (getLabel s) = (p # ps, a) # branch ⟹
getPotential (getLabel s) = Suc n ⟹
wft A s ⟹
wft A (Node (Step (Rule a [[p]]) n ((ps, a) # branch)) [s])›

 …

Essentially the Neg rule from the inductive predicate A, n ⊢ b.



Preliminary Results

An infinite path in a well formed tree must generate infinitely many nominals:

theorem infinite_generated:
  assumes ‹wft A tab› ‹ipath tab steps›
  shows ‹infinite (generated_ipath steps)›

Any fixed nominal (here a) only generates finitely many nominals:

theorem generated_bound:
  assumes ‹wft A tab› ‹ipath tab steps›
  shows ‹finite {(a, i) |p i. Fresh a p i ∈ getTag ` sset steps}›

Lots of work using the newness, (◊) restrictions etc.



Missing Results

Application of König’s lemma:
existing results imply an infinite chain of nominals generating each other

Crucially, the measure technique of Bolander and Blackburn:

- when i generates j, the formulas on j-blocks are smaller than those on 
i-blocks (due to restrictions on the copying Nom rule)

- formula sizes cannot decrease infinitely
- so such a chain actually cannot exist
- and there can be no infinite paths in a well formed tableau



Trouble

Formalizing the key lemma of the measure technique in Isabelle/HOL

- when i generates j, the formulas on j-blocks are smaller than those on 
i-blocks (due to restrictions on the copying Nom rule)

Difficult to reconcile this global view of a tableau with the coinduction principle

If anyone has any ideas, pull requests are very welcome ;-)

https://github.com/astahfrom/hybrid_termination

https://github.com/astahfrom/hybrid_termination
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