A Naive Prover for First-Order Logic

Asta Halkjær From

Syntax

Terms：variables，functions．The same de Bruijn indices as in SeCaV
datatype tm
＝Var nat（〈\＃＞）
｜Fun nat＜tm list＞（〈†＞）
Formulas：falsity，predicates，implication，universal quantification

```
datatype fm
    = Falsity (< \perp>)
        | Pre nat <tm list> (<\ddagger>)
        | Imp fm fm (infixr <\longrightarrow> 55)
        Uni fm (\langle\forall\rangle)
```

type_synonym sequent $=\langle f m$ list $\times \mathrm{fm}$ list〉

Sequent Calculus

$$
\begin{aligned}
& \operatorname{IdLE} \frac{A \vdash B}{A \vdash B} \quad \text { Axiom } n t s \frac{}{A \vdash B} \operatorname{IF} \ddagger n t s[\epsilon] A \text { AND } \ddagger n t s[\epsilon] B
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ImPL} p q \frac{A[\div](p \rightarrow q) \vdash p \# B \quad q \# A[\div](p \rightarrow q) \vdash B}{A \vdash B} \text { IF }(p \rightarrow q)[\epsilon] A \\
& \operatorname{IMPR} p q \frac{p \# A \vdash q \# B[\div](p \rightarrow q)}{A \vdash B} \operatorname{IF}(p \rightarrow q)[\epsilon] B \\
& \text { UNIL } t p \frac{p\langle t / 0\rangle \# A \vdash B}{A \vdash B} \text { IF } \forall p[\epsilon] A \\
& \text { UnıR } p \frac{A \vdash p(\# f r e s h(A @ B) / 0\rangle \# B[\div] \forall p}{A \vdash B} \text { IF } \forall p[\epsilon] B
\end{aligned}
$$

Prover Output

```
|- ((P) --> (Falsity)) --> ((P) --> (Falsity))
+ ImpR on (P) --> (Falsity) and (P) --> (Falsity)
(P) --> (Falsity) |- (P) --> (Falsity)
    + ImpR on P and Falsity
P, (P) --> (Falsity) |- Falsity
    + ImpL on P and Falsity
    P |- P, Falsity
        + FlsR
    P | - P
        + Axiom on P
    Falsity, P |- Falsity
    + FlsL
```


Prover Idea I

A stream of rules tells us what to do

- Say we have the sequent $\vdash \dagger 0[] \rightarrow \dagger 0[]$
- The rule $\operatorname{lmpR}(\dagger 0[])(† 0[])$ says we can prove it if
- we can prove the sequent †0 [] $\vdash 0$ []

Thus we need to ensure that we always eventually reach the rule we need

- We need to reach Axiom 0 [] for the sequent †0 [] $\vdash+0$ []
- But Axiom 1 [] doesn't harm us

Prover Idea II

Consider the stream of numbers (pretend they are rules):

0123456789101112 ...

Every number appears somewhere in the sequence
So we will reach the number we need at some point!

But what if we need it twice? Or we need 12 before we need 5 ?

Prover Idea III

Consider the stream of numbers

001012012301234 ...

No matter how many times a number has already appeared, it keeps appearing
The stream is fair (but larger numbers are further away than before)

How to get a fair stream of rules?

My Theory Fair-Stream

```
definition upt_lists :: <nat list stream> where
    <upt_lists \(\equiv\) smap (upt 0) (stl nats)>
definition fair_nats :: <nat stream> where
    <fair_nats \(\equiv\) flat upt_lists >
definition fair :: <'a stream \(\Rightarrow\) bool> where
    \(\langle\) fair \(s \equiv \forall x \in\) sset \(s . \forall m . \exists n \geq m . s!!n=x>\)
```

A handful of lemmas later...
definition fair_stream :: <(nat \Rightarrow 'a) \Rightarrow 'a stream> where
<fair_stream $\bar{f}=$ smap f fair_nats >
theorem fair_stream: <surj $f \Longrightarrow$ fair (fair_stream f)>
unfolding fair_stream_def using fair_surj.
theorem UNIV_stream: <surj $f \Longrightarrow$ sset (fair_stream f) = UNIV>
unfolding fair_stream_def using all_ex_fair_nats by (metis sset_range stream.set_map surjI)

Encoding To and From the Natural Numbers

The Isabelle theory Nat-Bijection provides the following operations:

- prod_encode :: "nat × nat \Rightarrow nat"
- prod_decode:: "nat \Rightarrow nat \times nat"
- sum_encode :: "nat + nat \Rightarrow nat"
- sum_decode :: "nat \Rightarrow nat + nat"
- list_encode :: "nat list = nat"
- list_decode :: "nat \Rightarrow nat list"

I write «c \$ x 三 sum_encode (c x)»

Encoding Terms as Natural Numbers

```
primrec nat of tm :: <tm => nat> where
    <nat_of_tm (#n) = prod_encode (n, 0)>
| <nat_of_tm (†f ts) = prod_encode (f, Suc (list_encode (map nat_of_tm ts)))>
function tm_of_nat :: <nat }=>\mathrm{ tm> where
    <tm_of_nat n = (case prod_decode n of
            (n, 0) = #n
    | (f, Suc ts) => †f (map tm_of_nat (list_decode ts)))>
    by pat_completeness auto
termination by (relation <measure id>) simp_all
lemma tm_nat: <tm_of_nat (nat_of_tm t) = t>
    by (induct t) (simp_all add: map_idI)
lemma surj_tm_of_nat: <surj tm_of_nat>
    unfolding sūrj_def using tm_n_nt by metis
```


Encoding Formulas as Natural Numbers

```
primrec nat_of_fm :: <fm => nat> where
    <nat of fm \perp = 0>
    <nat_of_fm (\ddaggerP ts) = Suc (Inl $ prod_encode (P, list_encode (map nat_of_tm ts)))>
    <nat_of_fm (p \longrightarrow q) = Suc (Inr $ prod_encode (Suc (nat_of_fm p), nat_of_fm q))>
    <nat_of_fm (\forallp) = Suc (Inr $ prod_encode (0, nat_of_fm p))>
function fm of nat :: < nat }=>\textrm{fm}>\mathrm{ where
    <fm of na\overline{t 0- = L>}
| <fm_of_nat (Suc n) = (case sum decode n of
            Inl n = let (P, ts) = prod_decode n in \ddaggerP (map tm_of_nat (list_decode ts))
    | Inr n }=>\mathrm{ (case prod_decode n of
                (Suc p, q) = fm_of_nat p \longrightarrow fm_of_nat q
            | (0, p) => \forall(fm_of_nat p)))>
    by pat_completeness auto
termination by (relation <measure id>) simp_all
lemma fm_nat: <fm_of_nat (nat_of_fm p) = p>
    using tm_nat by (induct p) (simp_all add: map_idI)
lemma surj_fm_of_nat: <surj fm_of_nat>
    unfolding surj_def using fm_nat by metis
```


Encoding Rules as Natural Numbers

```
definition idle_nat :: nat where
    <idle_nat \equiv 4294967295>
primrec nat_of_rule :: <rule => nat> where
    <nat_of_rule Idle = Inl $ prod_encode (0, idle_nat)>
    <nat_of_rule (Axiom n ts) = In\ $ prod_encode (Suc n, Suc (list_encode (map nat_of_tm ts)))>
    <nat_of_rule FlsL = Inl $ prod_encode (0, 0) >
    <nat_of_rule FlsR = Inl $ prod_encode (0, Suc 0)>
    <nat_of_rule (ImpL p q) = Inr $ prod_encode (Inl $ nat_of_fm p, Inl $ nat_of_fm q)>
    <nat_of_rule (ImpR p q) = Inr $ prod_encode (Inr $ nat_of_fm p, nat_of_fm q)>
    <nat_of_rule (UniL t p) = Inr $ prod_encode (Inl $ nat_of_tm t, Inr $ nat_of_fm p)>
    <nat_of_rule (UniR p) = Inl $ prod_encode (Suc (nat_of_fm-p), 0)>
```

lemma <map rule_of_nat [0..<100] =
$[F l s L, ~ I m p L ~ \perp \perp, ~ F l s R, ~ U n i L(\# 0) ~ \perp, ~ U n i R ~ \perp, ~ I m p R ~ \perp ~ \perp, ~ I m p R ~(\ddagger ~ 0 ~[]) ~ \perp, ~$ ImpL $\perp(\ddagger 0[])$, Axiom 0[]$, \operatorname{ImpR} \perp(\ddagger 0[])$, UniR ($\ddagger 0$ []), ImpL ($\ddagger 0[]) \perp, \operatorname{ImpR} \perp(\forall \perp), \operatorname{UniL}(\# 0)(\ddagger 0[])$, Axiom 0 [\# 0], $\operatorname{ImpR} \perp(\forall \perp)$, Axiom 1 [], UniL ($\dagger 0[]) \perp$, UniR $(\forall \perp), \operatorname{ImpR}(\ddagger 0[]) \perp$, ImpR ($\ddagger 0$ []) ($\ddagger 0$ []), ImpL $\perp(\forall \perp)$, Axiom 0 [\# 0, \# 0], ImpR $\perp(\ddagger 0$ [\# 0]), Axiom 1 [\# 0], ImpL ($\ddagger 0$ []) ($\ddagger 0$ []), Axiom 2 [], $\operatorname{ImpR}(\ddagger 0$ []) ($\ddagger 0$ []), UniR ($\ddagger 0$ [\# 0]), $\operatorname{ImpL}(\forall \perp) \perp$, ImpR ($\forall \perp$) \perp, UniL (\# 0) ($\forall \perp$), Axiom 0 [$\dagger 0$ []], $\operatorname{ImpR} \perp(\forall(\ddagger 0[]))$, Axiom 1 [\# 0, \# 0], UniL († 0 []) ($\ddagger 0$ []), Axiom 2 [\# 0], ImpR ($\ddagger 0[])(\forall \perp)$, Axiom 3[]$, \operatorname{UniL}(\# 1) \perp$, UniR ($\forall(\ddagger 0$ [])), ImpR ($\forall \perp$) \perp, $\operatorname{ImpR} \perp(\ddagger 0$ [\# 0]), $\operatorname{ImpL} \perp(\ddagger 0$ [\# 0]), Axiom 0 [\# 0, \# 0, \# 0], ImpR $\perp(\ddagger 1$ []), Axiom 1 [† 0 []], ImpL ($\ddagger 0$ []) ($\forall \mathrm{L})$, Axiom 2 [\# 0, \# 0], $\operatorname{ImpR}(\ddagger 0$ []) ($\ddagger 0$ [\# 0]), Axiom 3 [\# 0], ImpL ($\forall \perp$) ($\ddagger 0$ []), Axiom 4 [], $\operatorname{ImpR}(\forall \perp)(\ddagger 0$ []), UniR ($\ddagger 1[]), \operatorname{ImpL}(\ddagger 0[\# 0]) \perp, \operatorname{ImpR}(\ddagger 0[])(\forall \perp)$, UniL (\# 0) ($\ddagger 0$ [\# 0]), Axiom 0 [$\dagger 0$ [], \# 0], ImpR $\perp(\perp \longrightarrow \perp)$, Axiom 1 [\# 0, \# 0, \# 0], UniL ($\dagger 0$ []) ($\forall \perp$), Axiom 2 [$\dagger 0$ []], ImpR ($\ddagger 0$ []) (\forall ($\ddagger 0$ [])), Axiom 3 [\# 0, \# 0], UniL (\# 1) ($\ddagger 0$ []), Axiom 4 [\# 0], $\operatorname{ImpR}(\forall \perp)(\forall \perp)$, Axiom 5 [], UniL († 0 [\# 0]) \perp, UniR ($\perp \longrightarrow \perp), \operatorname{ImpR}(\ddagger 0[\# 0]) \perp, \operatorname{ImpR}(\forall \perp)(\ddagger 0[])$, ImpL $\perp(\forall(\ddagger 0[]))$, Axiom $0[\# 1], \operatorname{ImpR} \perp(\ddagger 0$ [\# 0, \# 0]), Axiom 1 [† 0 [], \# 0], ImpL ($\ddagger 0$ []) ($\ddagger 0$ [\# 0]), Axiom 2 [\# 0, \# 0, \# 0], ImpR ($\ddagger 0[])(\ddagger 1[]), ~ A x i o m ~ 3[\dagger 0[]], \operatorname{ImpL}(\forall \perp)(\forall \perp)$,

What Does It Matter? I

```
term <P \longrightarrow P>
term < ¥0 [] \longrightarrow ¢0 []>
lemma <nat_of_fm (\ddagger0 []) = 1> by eval
lemma <nat_of_rule (ImpR (\ddagger0 []) (\ddagger0 [])) = 27> by eval
lemma <nat_of_rule (Axiom 0 []) = 8> by eval
term <( }\forall\textrm{x}.\textrm{P}x)\longrightarrowP\textrm{a
term <\forall(\ddagger0 [#0]) \longrightarrow \ddagger0 [\dagger0 []]>
lemma <nat_of_fm (\ddagger0 [\dagger0 []]) = 13> by eval
lemma <nat_of_rule (ImpR (\forall(\ddagger0 [#0])) (\ddagger0 [\dagger0 []])) = 1865> by eval
lemma <nat_of_rule (UniL (†0 []) (\forall(\ddagger0 [#0]))) = 997> by eval
lemma <nat_of_rule (Axiom 0 [\dagger0 []]) = 32> by eval
```

Recall what the sequence looks like: 0010120123 ...
We reach 1865 only at position $1865 *(1+1865) / 2=1740045$.

What Does It Matter? II

The numbers in the formulas matter:

```
term <P }\longrightarrow\textrm{P}\longrightarrow\textrm{P}
term < \ddagger0 [] \longrightarrow ¥0 [] \longrightarrow \ddagger0 []>
lemma <nat_of_fm (\ddagger0 [] \longrightarrow ¥0 []) = 18> by eval
lemma <nat_of_rule (ImpR (\ddagger0 []) (\ddagger0 [] \longrightarrow \ddagger0 [])) = 469> by eval
term < P }\longrightarrow\textrm{Q}\longrightarrow\textrm{P}
term<\ddagger0 [] \longrightarrow #1 [] \longrightarrow ¢0 []>
lemma <nat_of_fm(\ddagger1 [] \longrightarrow }\ddagger0[])=70> by eva
lemma <nat_of_rule (ImpR ( }\ddagger0[])(\ddagger1 [] \longrightarrow ¥0 [])) = 5409> by eva
```

We reach 469 at position 110215
We reach 5409 at position 14631345

Example Proofs I

```
time ./Main "Imp (Pre 0 []) (Pre 0 [])"
|- (P) --> (P)
    + ImpR on \(P\) and \(P\)
P |- P
    + Axiom on P
```

Executed in 9.80 millis

Example Proofs II

```
time ./Main "Imp (Uni (Pre ब [Var 0])) (Pre 0 [Fun ब [l])
|-(forall P(0)) -->(P(a))
forall P(0) | - P(a)
+ UniL on 0 and P(0)
+ UniL on a and P(0)
P(a), P(0), forall P(0) |-P(a)
+ UniL on 1 and P(0)
P(1),P(a),P(0), forall P(0) |-P(a)
+ Unil on f(0) and P(0)
P(f(0)),P(1),P(a),P(0), forall P(0) |-P(a)
+ UniL on b and P(0)
P(b),P(f(0)),P(1),P(a),P(0), forall P(0) |-P(a)
+ + Unil oo 2 and P(0)
&(f)
+ UniL on g(0) and P(0)
P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0) |-P(a)
& +UniL on C and P(0)
l
+UniL on f(a) and P(0)
M(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0)|-P(a
P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0)|-P(a)
+ UniL on }\textrm{h}(0)\mathrm{ and P(e)
P(h(0)), P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0) |-P(a)
+ UniL on d and P(0)
P(d),P(h(0)),P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0),forall P(0) \-P(a)
P(4),P(d),P(h(0)),P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0) |-P(a)
+ Unil on f(0,0,0) and P(0)
P(f(0,0,0)),P(4),P(d),P(h(0)),P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0),forall P(0)|-P(a)
P(g(a)),P(f(0,0,0)),P(4),P(d),P(h(0)),P(g(0,0)),P(f(a)),P(3),P(c),P(g(0)),P(f(0,0)),P(2),P(b),P(f(0)),P(1),P(a),P(0), forall P(0) I-P(a)
+ UniL on }\textrm{h}(0,0)\mathrm{ and }P(0
```



```
P(2),P(b),P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
+ Axiom on P(a)
Executed in 3.51 secs
```


Example Proofs III

```
time ./Main "Imp (Pre 0 []) (Imp (Pre 0 []) (Pre 0 []))"
|- (P) --> ((P) --> (P))
    + ImpR on \(P\) and \((P)\)--> ( \(P\) ) (position 110215)
P |- (P) --> (P)
    + ImpR on \(P\) and \(P\)
P, P |- P
    + Axiom on P
```

Executed in 192.72 millis

Example Proofs IV

```
time ./Main "Imp (Pre 0 []) (Imp (Pre 1 []) (Pre 0 []))"
|- (P) --> ((Q) --> (P))
    + ImpR on \(P\) and ( Q ) --> ( P )
P |- (Q) --> (P)
    \(+\operatorname{ImpR}\) on Q and P
Q, \(\mathrm{P} \mid-\mathrm{P}\)
    + Axiom on P
```

Executed in 43.01 secs

Isabelle/HOL Details |

datatype rule
= Idle
| Axiom nat <tm list>
| FlsL
| FlsR
| ImpL fm fm
| ImpR fm fm
| UniL tm fm
| UniR fm
definition rules :: <rule stream> where <rules \equiv fair_stream rule_of_nat>
lemma UNIV_rules: <sset rules = UNIV> unfolding rules_def using UNIV_stream surj_rule_of_nat .

A datatype for our rules

A fair stream of rules
which includes every rule

Sequent Calculus Reprise

$$
\begin{aligned}
& \operatorname{IdLE} \frac{A \vdash B}{A \vdash B} \quad \text { Axiom } n t s \frac{}{A \vdash B} \text { IF } \ddagger n t s[\epsilon] A \text { AND } \ddagger n t s[\epsilon] B
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{IMPL} p q \frac{A[\div](p \longrightarrow q) \vdash p \# B \quad q \# A[\div](p \longrightarrow q) \vdash B}{A \vdash B} \operatorname{IF}(p \longrightarrow q)[\epsilon] A \\
& \operatorname{IMPR} p q \frac{p \# A \vdash q \# B[\div](p \longrightarrow q)}{A \vdash B} \text { IF }(p \longrightarrow q)[\epsilon] B \\
& \text { UnIL } t p \frac{p\langle t / 0\rangle \# A \vdash B}{A \vdash B} \text { IF } \forall p[\epsilon] A \quad \quad \text { UnIR } p \frac{A \vdash p\langle \# f r e s h(A @ B) / 0\rangle \# B[\div] \forall p}{A \vdash B} \text { if } \forall p[\epsilon] B
\end{aligned}
$$

Isabelle/HOL Details II

```
function eff :: <rule }=>\mathrm{ sequent }=>\mathrm{ (sequent fset) option> where
    <eff Idle (A, B) =
        Some {| (A, B) |},
| <eff (Axiom n ts) (A, B) = (if ¥n ts [\in] A ^ ¥n ts [\in] B then
        Some {||} else None)>
| <eff FlsL (A, B) = (if \perp [E] A then
        Some {||} else None)>
| <eff FlsR (A, B) = (if \perp [ [] B then
        Some {| (A, B [\div] L) |} else None)>
| <eff (ImpL p q) (A, B) = (if (p \longrightarrow q) [ |] A then
        Some {| (A [\div] (p \longrightarrow q), p # B), (q # A [\div] (p \longrightarrow q), B) |} else None)>
| <eff (ImpR p q) (A, B) = (if (p \longrightarrow q) [ |] B then
        Some {| (p # A, q # B [\div] (p \longrightarrow q)) |} else None)>
| <eff (UniL t p) (A, B) = (if \forallp [ [] A then
        Some {| (p<t/0\rangle # A, B) |} else None)>
| <eff (UniR p) (A, B) = (if \forallp [ [ ] B then
        Some {| (A, p\#(fresh (A @ B))/0\rangle# B [\div] \forallp) |} else None)>
    by pat completeness auto
termination by (relation <measure size>) standard
```


Isabelle/HOL Details III

Our rules don't step on each other (only r can disable r):

```
lemma per_rules':
    assumes <enabled r (A, B)> <\neg enabled r (A', B')>
        <eff r' (A, B) = Some ss'\rangle <(A', B') |\in| ss'\rangle
    shows <r' = r>
```

If we give this lemma (+ UNIV_rules) to Blanchette et al., they give us a prover:

```
definition <prover \equiv mkTree rules>
```

codatatype 'a tree = Node (root: 'a) (cont: "'a tree fset")
primcorec mkTree where

"root (mkTree rs s) = (s, (shd (trim rs s)))"
\mid "cont (mkTree rs s) = fimage (mkTree (stl (trim rs s))) (pickEff (shd (trim rs s)) s)"

Isabelle/HOL Details IV

Blanchette et al. also tell us the prover produces one of two things:
lemma epath_prover:

```
    fixes A B :: <fm list>
```

 defines <t \(\equiv \operatorname{prover}(A, B)\) >
 shows <(fst (root t) = (A, B) \(\wedge\) wf t \(\wedge\) tfinite t) \(\vee\)
 (ヨsteps. fst (shd steps) \(=(\mathrm{A}, \mathrm{B}) \wedge\) epath steps \(\wedge\) Saturated steps)> (is <?A \(\vee\) ?B>)
 - A finite, well formed proof tree
- Soundness: show that this guarantees validity of the formula
- a saturated escape path
- Completeness: show that this induces a counter model for the formula

Details omitted here (even though they are interesting!)

References

My prover + formalization:
https://www.isa-afp.org/entries/FOL Seq Calc3.html

The abstract completeness framework by Blanchette et al.:
$\underline{\text { https://www.isa-afp.org/entries/Abstract Completeness.html }}$

