
A Naive Prover for
First-Order Logic

Asta Halkjær From

Technical University of Denmark, 2022-04-29

Syntax

Terms: variables, functions. The same de Bruijn indices as in SeCaV

Formulas: falsity, predicates, implication, universal quantification

Sequent Calculus

Prover Output

|- ((P) --> (Falsity)) --> ((P) --> (Falsity))
 + ImpR on (P) --> (Falsity) and (P) --> (Falsity)
(P) --> (Falsity) |- (P) --> (Falsity)
 + ImpR on P and Falsity
P, (P) --> (Falsity) |- Falsity
 + ImpL on P and Falsity
 P |- P, Falsity
 + FlsR
 P |- P
 + Axiom on P
 Falsity, P |- Falsity
 + FlsL

Prover Idea I

A stream of rules tells us what to do

- Say we have the sequent ⊢ †0 [] ⟶ †0 []
- The rule ImpR (†0 []) (†0 []) says we can prove it if
- we can prove the sequent †0 [] ⊢ †0 []

Thus we need to ensure that we always eventually reach the rule we need

- We need to reach Axiom 0 [] for the sequent †0 [] ⊢ †0 []
- But Axiom 1 [] doesn’t harm us

Prover Idea II

Consider the stream of numbers (pretend they are rules):

0 1 2 3 4 5 6 7 8 9 10 11 12 …
Every number appears somewhere in the sequence

So we will reach the number we need at some point!

But what if we need it twice? Or we need 12 before we need 5?

Prover Idea III

Consider the stream of numbers

0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 …
No matter how many times a number has already appeared, it keeps appearing

The stream is fair (but larger numbers are further away than before)

How to get a fair stream of rules?

My Theory Fair-Stream

A handful of lemmas later…

[0] [0, 1] [0, 1, 2] [0, 1, 2, 3] …

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, …

Encoding To and From the Natural Numbers

The Isabelle theory Nat-Bijection provides the following operations:

- prod_encode :: "nat × nat ⇒ nat"
- prod_decode :: "nat ⇒ nat × nat"
- sum_encode :: "nat + nat ⇒ nat"
- sum_decode :: "nat ⇒ nat + nat"
- list_encode :: "nat list ⇒ nat"
- list_decode :: "nat ⇒ nat list"

I write ‹c $ x ≡ sum_encode (c x)›

Encoding Terms as Natural Numbers

Encoding Formulas as Natural Numbers

Encoding Rules as Natural Numbers

What Does It Matter? I

Recall what the sequence looks like: 0 0 1 0 1 2 0 1 2 3 …

We reach 1865 only at position 1865*(1+1865)/2 = 1740045.

What Does It Matter? II

The numbers in the formulas matter:

We reach 469 at position 110215
We reach 5409 at position 14631345

Example Proofs I

time ./Main "Imp (Pre 0 []) (Pre 0 [])"

|- (P) --> (P)

 + ImpR on P and P

P |- P

 + Axiom on P

Executed in 9.80 millis

Example Proofs II
time ./Main "Imp (Uni (Pre 0 [Var 0])) (Pre 0 [Fun 0 []])"

|- (forall P(0)) --> (P(a))
 + ImpR on forall P(0) and P(a)

forall P(0) |- P(a)
 + UniL on 0 and P(0)
P(0), forall P(0) |- P(a)
 + UniL on a and P(0)
P(a), P(0), forall P(0) |- P(a)
 + UniL on 1 and P(0)
P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0) and P(0)
P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on b and P(0)
P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 2 and P(0)
P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0, 0) and P(0)
P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(0) and P(0)
P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on c and P(0)
P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 3 and P(0)
P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(a) and P(0)
P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(0, 0) and P(0)
P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on h(0) and P(0)
P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on d and P(0)
P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on 4 and P(0)
P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on f(0, 0, 0) and P(0)
P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on g(a) and P(0)
P(g(a)), P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)), P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + UniL on h(0, 0) and P(0)

P(h(0, 0)), P(g(a)), P(f(0, 0, 0)), P(4), P(d), P(h(0)), P(g(0, 0)), P(f(a)), P(3), P(c), P(g(0)), P(f(0, 0)),
P(2), P(b), P(f(0)), P(1), P(a), P(0), forall P(0) |- P(a)
 + Axiom on P(a)
__

Executed in 3.51 secs

We need to get to 1865 to hit the ImpR rule.

Then we start back at 0.

The UniL rule we need is at 997.

But then we keep running from 997 to 1866.

And hit lots of UniL rules in between…

In the end: a very silly derivation.

Example Proofs III

time ./Main "Imp (Pre 0 []) (Imp (Pre 0 []) (Pre 0 []))"

|- (P) --> ((P) --> (P))

 + ImpR on P and (P) --> (P) (position 110215)
P |- (P) --> (P)

 + ImpR on P and P

P, P |- P

 + Axiom on P

__

Executed in 192.72 millis

Example Proofs IV

time ./Main "Imp (Pre 0 []) (Imp (Pre 1 []) (Pre 0 []))"

|- (P) --> ((Q) --> (P))

 + ImpR on P and (Q) --> (P) (position 14631345)
P |- (Q) --> (P)

 + ImpR on Q and P

Q, P |- P

 + Axiom on P

__

Executed in 43.01 secs

Isabelle/HOL Details I

A datatype for our rules

A fair stream of rules

which includes every rule

Sequent Calculus Reprise

Isabelle/HOL Details II

Isabelle/HOL Details III

Our rules don’t step on each other (only r can disable r):

If we give this lemma (+ UNIV_rules) to Blanchette et al., they give us a prover:

Isabelle/HOL Details IV

Blanchette et al. also tell us the prover produces one of two things:

- A finite, well formed proof tree
- Soundness: show that this guarantees validity of the formula

- a saturated escape path
- Completeness: show that this induces a counter model for the formula

Details omitted here (even though they are interesting!)

References

My prover + formalization:

https://www.isa-afp.org/entries/FOL_Seq_Calc3.html

The abstract completeness framework by Blanchette et al.:

https://www.isa-afp.org/entries/Abstract_Completeness.html

https://www.isa-afp.org/entries/FOL_Seq_Calc3.html
https://www.isa-afp.org/entries/Abstract_Completeness.html

