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Prelude
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Deduction

Inferring new knowledge:

● All men are mortal
● Socrates is a man
+ Socrates is mortal

We study general principles:

● All cats are cute
● Betty is a cat
+ Betty is cute
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Deduction Methods – Languages

We use languages with placeholders

if water is wet then the moon is made of green cheese

if 2 + 2 = 5 then the sun shines at night

if x then y

An interpretation assigns truth values to placeholders:

x := True, y := False or x := False, y := True or …

A valid formula is true under all interpretations

Valid: if  x and y  then x Not valid: if x then  x and y
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Deduction Methods – Propositional Logic

We need a formal syntax

A formula p or q in propositional logic is either:

● a prop. symbol: x, y a placeholder
● falsity: ⊥ “false”
● a conjunction: p ∧ q “p is true and q is true”
● an implication: p ⟶ q “if p is true then q is true”

Example: p ⟶ q ⟶ p ∧ q
How do we prove that such a formula is valid?
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Deduction Methods – Natural Deduction

+ p, A ⊢ p

● A ⊢ ⊥
+ A ⊢ p

● A ⊢ p ∧ q
+ A ⊢ p

● A ⊢ p ∧ q
+ A ⊢ q

● A ⊢ p
● A ⊢ q
+ A ⊢ p ∧ q

● A ⊢ p ⟶ q 
● A ⊢ p
+ A ⊢ q

● p, A ⊢ q
+ A ⊢ p ⟶ q

A ⊢ p means “the assumptions A imply the conclusion p”
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Natural Deduction Example

We can always infer assumptions:

+ p, q ⊢ p
+ p, q ⊢ q

So we can infer the conjunction p ∧ q:

+ p, q ⊢ p ∧ q

Then we can turn the assumptions into implications:

+ p ⊢ q ⟶ p ∧ q
+ ⊢ p ⟶ q ⟶ p ∧ q
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Correct Deduction Methods

Logic famously turns mothers into rocks:

● Rocks cannot fly
● Mama cannot fly
+ Mama is a rock

No! The conclusion does not follow from the premises

Two important properties for deduction methods:

Soundness: every provable formula is valid (only good things)
Completeness: every valid formula is provable (every good thing)
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Formally Correct Deduction Methods

How to prove e.g. soundness and completeness?

● By arguments in English/Danish/…?

● By arguments in a larger logic?

A formal logic gives a solid foundation

With a formal logic we can get computer assistance

Higher-Order Logic = Functional Programming + Logic

More of the same: syntax + natural deduction rules
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Computational Logic

“Computational logic is the use of computers to establish facts in a logical formalism.”
– Larry Paulson

Isabelle/HOL is a proof assistant built on higher-order logic:

● The language of HOL

● Proof system for HOL

● Automatic verification of our arguments

● Proof search

● Counterexample generation

● Code export
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Applications

Many things deemed worthy of formal verification:

● Encryption on the internet

● The coprocessor in your smartphone

● Amazon Web Services privacy

● Railway signalling

● Programming language compilers

● Mathematics
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What is Isabelle/HOL like? – Syntax

Explain the syntax to the computer:

datatype formula

  = Proposition string (‹⋅›)

  | Falsity (‹⊥›)

  | Conjunction formula formula (infixr ‹∧› 65)

  | Implication formula formula (infixr ‹⟶› 55)

Now we can write our example formula:

term ‹p ⟶ q ⟶ p ∧ q›

term ‹p ⟶ q ⟶ p ∧ ›
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What is Isabelle/HOL like? – Deduction

Explain the deduction rules to the computer:

inductive Deduction :: ‹formula set ⇒ formula ⇒ bool›

  (‹_ ⊢ _› [50, 50] 50) where

  Assm: ‹p, A ⊢ p›

| FlsE: ‹A ⊢ ⊥ ⟹ A ⊢ p›

| ConE1: ‹A ⊢ p ∧ q ⟹ A ⊢ p›

| ConE2: ‹A ⊢ p ∧ q ⟹ A ⊢ q›

| ConI: ‹A ⊢ p ⟹ A ⊢ q ⟹ A ⊢ p ∧ q›

| ImpE: ‹A ⊢ p ⟶ q ⟹ A ⊢ p ⟹ A ⊢ q›

| ImpI: ‹p, A ⊢ q ⟹ A ⊢ p ⟶ q›
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What is Isabelle/HOL like? – Deduction Example

We can type out our example:
have ‹{p, q} ⊢ p› and ‹{p, q} ⊢ q›
  using Assm by (simp, metis insert_commute)+
then have ‹{p, q} ⊢ p ∧ q›
  using ConI by blast
then have ‹{p} ⊢ q ⟶ p ∧ q›
  using ImpI by (metis insert_commute)
then show ‹{} ⊢ p ⟶ q ⟶ p ∧ q›
  using ImpI by blast

Or prove it automatically:
lemma ‹{} ⊢ p ⟶ q ⟶ p ∧ q›
  sledgehammer (* by (metis Assm ConI ImpI insert_commute) *)
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What is Isabelle/HOL like? – Semantics

Explain the meaning of formulas. I interprets the placeholders:

primrec semantics :: ‹(string ⇒ bool) ⇒ formula ⇒ bool›

  (‹_ ⊨ _› [50, 50] 50) where

  ‹I ⊨ ⋅x ⟷ I x›

| ‹I ⊨ ⊥ ⟷ False›

| ‹I ⊨ p ∧ q ⟷ I ⊨ p ∧ I ⊨ q›

| ‹I ⊨ p ⟶ q ⟷ I ⊨ p ⟶ I ⊨ q›

x ⟶ y, for x := True, y := False

value ‹I(''x'' := True, ''y'' := False) ⊨ ⋅''x'' ⟶ ⋅''y''›

“False” :: “bool”
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What is Isabelle/HOL like? – Soundness

“If we can derive p, then p is true for all interpretations I of the placeholders”:

corollary ‹{} ⊢ p ⟹ ∀I. I ⊨ p›

  using soundness by blast

“If we can prove p from A and everything in A is true, then p is true:

lemma soundness: ‹A ⊢ p ⟹ ∀q ∈ A. I ⊨ q ⟹ I ⊨ p›

  by (induct A p rule: Deduction.induct) simp_all

Isabelle proves it for us
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Thesis Chapters

● Formalizing Henkin-Style Completeness of an Axiomatic System for Propositional Logic

● A Succinct Formalization of the Completeness of First-Order Logic

● Verifying a Sequent Calculus Prover for First-Order Logic with Functions in 
Isabelle/HOL

● Synthetic Completeness for a Terminating Seligman-Style Tableau System

● Formalized Soundness and Completeness of Epistemic and Public 
Announcement Logic

● Aesop: White-Box Best-First Proof Search for Lean

● An Abstract Framework for Synthetic Completeness
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Epistemic and Public Announcement Logic
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Epistemic Logic

Propositional logic: one interpretation of placeholders
Epistemic logic: a graph of interpretations:

● World for each interpretation

● Arrows between worlds

● An actual world, “our starting point”

Syntax is propositional logic +

● K p “we know p”
“p is true everywhere an arrow points to”
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Different Kinds of Knowledge

● Self-arrows: true knowledge

If we know something, then it is true

● Shortcut arrows: positive introspection

We know what we know

● Euclidean arrows: negative introspection

We know what we do not know

How to reason about all of them uniformly?
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Different Kinds of Knowledge

● Self-arrows: true knowledge

K p ⟶ p

● Shortcut arrows: positive introspection

K p ⟶ K (K p)

● Euclidean arrows: negative introspection

¬ K p ⟶ K (¬ K i p) (¬ p means p ⟶ ⊥)

How to reason about all of them uniformly?
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A Parameterized Proof System

A ⊢ p means “we can prove p from axioms A”

inductive AK :: ‹('i fm ⇒ bool) ⇒ 'i fm ⇒ bool› (‹_ ⊢ _› [50, 50] 50)

  for A :: ‹'i fm ⇒ bool› where

  A1: ‹tautology p ⟹ A ⊢ p›

| A2: ‹A ⊢ K i p ∧ K i (p ⟶ q) ⟶ K i q›

| Ax: ‹A p ⟹ A ⊢ p›

| R1: ‹A ⊢ p ⟹ A ⊢ p ⟶ q ⟹ A ⊢ q›

| R2: ‹A ⊢ p ⟹ A ⊢ K i p›

With A we can include different kinds of knowledge

We can work abstractly for as long as possible
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Soundness

Some axioms are only valid on some types of graphs:

● K p ⟶ p requires self-arrows, etc.

When is our deduction method sound for graphs of type T?

When the axioms are all valid on graphs of type T:

theorem soundness:

  assumes ‹⋀M w q. A q ⟹ T M ⟹ w ∈ 𝒲 M ⟹ M, w ⊨ q›

  shows ‹A ⊢ p ⟹ T M ⟹ w ∈ 𝒲 M ⟹ M, w ⊨ p›

Instead of one theorem per axiom, we have a family of theorems
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Completeness-via-Canonicity

Given a set of axioms, there is a canonical way to build a graph

● Axiom K p ⟶ K (K p) gives the canonical graph shortcut arrows

 Completeness-via-canonicity arguments are well known:

● Prove that your axioms give the canonical graph property T
+ Get completeness for your logic on graphs of type T

corollary completeness:

  assumes ‹T; {} ⊫ p› and ‹T (canonical A)›

  shows ‹A ⊢ p›
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Public Announcement Logic

Someone says r and we believe them
This changes the graph of our uncertainty

Syntax is epistemic logic +

● [r!] p “after the announcement of r, p is true”
“considering only worlds satisfying r, p is true”

Examples:

● [x!] K x “we are told the sky is blue, so now we know”
● [⊥!] K p “we are told a lie, so now we know everything”

announcing x

26



Soundness and Completeness

Soundness requires well behaved announcements:

● Axioms A are valid on graphs of type T

● Announcements preserve property T

+ Soundness of PAL+A on graphs of type T

Public announcements are shorthand for pure epistemic logic:

● EL completeness for axioms A on graphs of type T

+ PAL completeness for axioms A on graphs of type T
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Aesop: Proof Search for Lean 4
Collaboration with Jannis Limperg
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Lean 4

A proof assistant based on dependent type theory

Younger than Isabelle/HOL

How do we get the same automation?

+ ⊢ p ⟶ q ⟶ p ∧ q
+ p ⊢ q ⟶ p ∧ q
+ p, q ⊢ p ∧ q
+ p, q ⊢ q
+ p, q ⊢ p
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Search Tree

We have a goal we want to prove

+ ⊢ p ⟶ q ⟶ p ∧ q

We have rules that transform goals into subgoals

● A ⊢ p
● A ⊢ q
+ A ⊢ p ∧ q

Some rules have no subgoals

Build a tree!
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How to Expand the Tree?

Many paths lead nowhere

● Give each rule a success probability

● Start at goal priority 100%

● Multiply to get subgoal priority

Always work on the goal with highest priority

(values for illustration only)
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Metavariables

Recall implication elimination:

● A ⊢ p ⟶ q 
● A ⊢ p
+ A ⊢ q

When we use it, how do we guess p?

● Leave a ?hole for a later rule to fill in

● Fill a copy of the other subgoal with the same solution
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Applications

Used by the mathlib project in porting from Lean 3 to Lean 4.

They have extended it to special situations:

● aesop trivial proofs

● aesop_cat category theory

● aesop_graph graph theory

● Sym2 algebra

● continuity topology
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Abstract Synthetic Completeness Framework
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Synthetic Completeness?

Proving soundness is usually easy: (only good things)

● Each axiom and rule makes sense

Proving completeness is trickier: (every good thing)

● We have enough rules and axioms

Two main approaches:

● Analytic: build countermodels from failing proof attempts
● Synthetic: build models for consistent sets
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Formalized Synthetic Completeness

The synthetic method works for many logics:

● modal and hybrid logic
● first-order logic
● second-order logic

By formalizing it we get:

● Computer assistance in applying it
● Interactive documentation
● Assurance of its correctness
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Maximal Consistent Sets

Assumptions that prove falsity, A ⊢ ⊥, are contradictory, “in conflict”

Say we have a consistent, “harmonious” set of formulas Sn

(Sketch) We can go through every possible formula:

● If adding it preserves consistency, add it

● If adding it creates a contradiction, leave it out

In the end every formula or its negation is in there

Isabelle/HOL only superficially different from set theory
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Witnesses

We want a few more formulas, though:

● For “there exists someone mortal”, we want, e.g., “Socrates is mortal”

Using “Socrates” again and again could lead to a contradiction

● In set theory, they add extra words for “Aristotle”, “Plato”, etc.

● In Isabelle/HOL, this changes the type of the language

I assume enough witnesses from the start

Slightly different ceremony but much the same
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Requirements

All of this can be done abstractly:

● Subsets of consistent sets are consistent
● Inconsistent sets have finite inconsistencies
● There are infinitely many formulas
+ Maximal consistent sets

● Formulas and their witnesses are finite
● Fresh witnesses preserve consistency
● We have enough witnesses
+ Witnessed maximal consistent sets
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Where is my Completeness?

The semantics has a certain shape:

● The truth of a formula depends on the truth of its parts
in a certain way

If we can prove that MCSs have the same shape:

● The membership of a formula depends on the membership of its parts
in the same way

Then we can relate truth and membership

What is the shape we are looking for?
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From Semantics to Semics

Recall when a propositional formula is true:

● a prop. symbol: x, y when the interpretation says so
● falsity: ⊥ never
● a conjunction: p ∧ q p is true and q is true

This is self-referential. We can leave a hole [        ] instead:

● a prop. symbol: x, y when the interpretation says so
● falsity: ⊥ never
● a conjunction: p ∧ q p [        ] and q [        ]
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Filling Holes

Now we can use this shape:

p ∧ q is in MCS if and only if p is in MCS and q is in MCS

Old functional programming trick:

● Take a recursive definition

● Abstract away the recursive occurrences

❏ Filling in the [original semantics] gives the original semantics

❏ The fixpoint [semics] is the original semantics
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Resulting Framework

We can build MCSs for at least:

● propositional tableau and sequent calculus
● first-order and hybrid logic natural deduction
● modal logic system K

The semics trick is useful when the logic has a Cut rule

Future work:

● A semics equation for downwards saturated sets (if and only if)
● Formalize compactness theorem for uncountable languages?
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Conclusion
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Conclusion

Different logics can express different things

Proof assistants can help us with our reasoning

● Encourage proof engineering

● Automate trivial proofs

● Express general frameworks

There are many cool logics out there

Go formalize their completeness
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