
Formally Correct Deduction
Methods for Computational Logic

PhD defense, Asta Halkjær From
DTU Compute, 2023-04-21

Formalities

● Study period 2020-02-01 to 2023-01-31

● Supervisor Jørgen Villadsen
● Co-supervisor Nina Gierasimczuk

● Committee Thomas Bolander
Torben Braüner
Lawrence C. Paulson

● Chairperson Carsten Witt

2

Prelude

3

Deduction

Inferring new knowledge:

● All men are mortal
● Socrates is a man
+ Socrates is mortal

We study general principles:

● All cats are cute
● Betty is a cat
+ Betty is cute

4

Deduction Methods – Languages

We use languages with placeholders

if water is wet then the moon is made of green cheese

if 2 + 2 = 5 then the sun shines at night

if x then y

An interpretation assigns truth values to placeholders:

x := True, y := False or x := False, y := True or …

A valid formula is true under all interpretations

Valid: if x and y then x Not valid: if x then x and y

5

Deduction Methods – Propositional Logic

We need a formal syntax

A formula p or q in propositional logic is either:

● a prop. symbol: x, y a placeholder
● falsity: ⊥ “false”
● a conjunction: p ∧ q “p is true and q is true”
● an implication: p ⟶ q “if p is true then q is true”

Example: p ⟶ q ⟶ p ∧ q
How do we prove that such a formula is valid?

6

Deduction Methods – Natural Deduction

+ p, A ⊢ p

● A ⊢ ⊥
+ A ⊢ p

● A ⊢ p ∧ q
+ A ⊢ p

● A ⊢ p ∧ q
+ A ⊢ q

● A ⊢ p
● A ⊢ q
+ A ⊢ p ∧ q

● A ⊢ p ⟶ q
● A ⊢ p
+ A ⊢ q

● p, A ⊢ q
+ A ⊢ p ⟶ q

A ⊢ p means “the assumptions A imply the conclusion p”

7

Natural Deduction Example

We can always infer assumptions:

+ p, q ⊢ p
+ p, q ⊢ q

So we can infer the conjunction p ∧ q:

+ p, q ⊢ p ∧ q

Then we can turn the assumptions into implications:

+ p ⊢ q ⟶ p ∧ q
+ ⊢ p ⟶ q ⟶ p ∧ q

8

Correct Deduction Methods

Logic famously turns mothers into rocks:

● Rocks cannot fly
● Mama cannot fly
+ Mama is a rock

No! The conclusion does not follow from the premises

Two important properties for deduction methods:

Soundness: every provable formula is valid (only good things)
Completeness: every valid formula is provable (every good thing)

9

Formally Correct Deduction Methods

How to prove e.g. soundness and completeness?

● By arguments in English/Danish/…?

● By arguments in a larger logic?

A formal logic gives a solid foundation

With a formal logic we can get computer assistance

Higher-Order Logic = Functional Programming + Logic

More of the same: syntax + natural deduction rules

10

Computational Logic

“Computational logic is the use of computers to establish facts in a logical formalism.”
– Larry Paulson

Isabelle/HOL is a proof assistant built on higher-order logic:

● The language of HOL

● Proof system for HOL

● Automatic verification of our arguments

● Proof search

● Counterexample generation

● Code export

11

Applications

Many things deemed worthy of formal verification:

● Encryption on the internet

● The coprocessor in your smartphone

● Amazon Web Services privacy

● Railway signalling

● Programming language compilers

● Mathematics

12

What is Isabelle/HOL like? – Syntax

Explain the syntax to the computer:

datatype formula

 = Proposition string (‹⋅›)

 | Falsity (‹⊥›)

 | Conjunction formula formula (infixr ‹∧› 65)

 | Implication formula formula (infixr ‹⟶› 55)

Now we can write our example formula:

term ‹p ⟶ q ⟶ p ∧ q›

term ‹p ⟶ q ⟶ p ∧ ›

13

What is Isabelle/HOL like? – Deduction

Explain the deduction rules to the computer:

inductive Deduction :: ‹formula set ⇒ formula ⇒ bool›

 (‹_ ⊢ _› [50, 50] 50) where

 Assm: ‹p, A ⊢ p›

| FlsE: ‹A ⊢ ⊥ ⟹ A ⊢ p›

| ConE1: ‹A ⊢ p ∧ q ⟹ A ⊢ p›

| ConE2: ‹A ⊢ p ∧ q ⟹ A ⊢ q›

| ConI: ‹A ⊢ p ⟹ A ⊢ q ⟹ A ⊢ p ∧ q›

| ImpE: ‹A ⊢ p ⟶ q ⟹ A ⊢ p ⟹ A ⊢ q›

| ImpI: ‹p, A ⊢ q ⟹ A ⊢ p ⟶ q›

14

What is Isabelle/HOL like? – Deduction Example

We can type out our example:
have ‹{p, q} ⊢ p› and ‹{p, q} ⊢ q›
 using Assm by (simp, metis insert_commute)+
then have ‹{p, q} ⊢ p ∧ q›
 using ConI by blast
then have ‹{p} ⊢ q ⟶ p ∧ q›
 using ImpI by (metis insert_commute)
then show ‹{} ⊢ p ⟶ q ⟶ p ∧ q›
 using ImpI by blast

Or prove it automatically:
lemma ‹{} ⊢ p ⟶ q ⟶ p ∧ q›
 sledgehammer (* by (metis Assm ConI ImpI insert_commute) *)

15

What is Isabelle/HOL like? – Semantics

Explain the meaning of formulas. I interprets the placeholders:

primrec semantics :: ‹(string ⇒ bool) ⇒ formula ⇒ bool›

 (‹_ ⊨ _› [50, 50] 50) where

 ‹I ⊨ ⋅x ⟷ I x›

| ‹I ⊨ ⊥ ⟷ False›

| ‹I ⊨ p ∧ q ⟷ I ⊨ p ∧ I ⊨ q›

| ‹I ⊨ p ⟶ q ⟷ I ⊨ p ⟶ I ⊨ q›

x ⟶ y, for x := True, y := False

value ‹I(''x'' := True, ''y'' := False) ⊨ ⋅''x'' ⟶ ⋅''y''›

“False” :: “bool”

16

What is Isabelle/HOL like? – Soundness

“If we can derive p, then p is true for all interpretations I of the placeholders”:

corollary ‹{} ⊢ p ⟹ ∀I. I ⊨ p›

 using soundness by blast

“If we can prove p from A and everything in A is true, then p is true:

lemma soundness: ‹A ⊢ p ⟹ ∀q ∈ A. I ⊨ q ⟹ I ⊨ p›

 by (induct A p rule: Deduction.induct) simp_all

Isabelle proves it for us

17

Thesis Chapters

● Formalizing Henkin-Style Completeness of an Axiomatic System for Propositional Logic

● A Succinct Formalization of the Completeness of First-Order Logic

● Verifying a Sequent Calculus Prover for First-Order Logic with Functions in
Isabelle/HOL

● Synthetic Completeness for a Terminating Seligman-Style Tableau System

● Formalized Soundness and Completeness of Epistemic and Public
Announcement Logic

● Aesop: White-Box Best-First Proof Search for Lean

● An Abstract Framework for Synthetic Completeness

18

Epistemic and Public Announcement Logic

19

Epistemic Logic

Propositional logic: one interpretation of placeholders
Epistemic logic: a graph of interpretations:

● World for each interpretation

● Arrows between worlds

● An actual world, “our starting point”

Syntax is propositional logic +

● K p “we know p”
“p is true everywhere an arrow points to”

20

Different Kinds of Knowledge

● Self-arrows: true knowledge

If we know something, then it is true

● Shortcut arrows: positive introspection

We know what we know

● Euclidean arrows: negative introspection

We know what we do not know

How to reason about all of them uniformly?

21

Different Kinds of Knowledge

● Self-arrows: true knowledge

K p ⟶ p

● Shortcut arrows: positive introspection

K p ⟶ K (K p)

● Euclidean arrows: negative introspection

¬ K p ⟶ K (¬ K i p) (¬ p means p ⟶ ⊥)

How to reason about all of them uniformly?

22

A Parameterized Proof System

A ⊢ p means “we can prove p from axioms A”

inductive AK :: ‹('i fm ⇒ bool) ⇒ 'i fm ⇒ bool› (‹_ ⊢ _› [50, 50] 50)

 for A :: ‹'i fm ⇒ bool› where

 A1: ‹tautology p ⟹ A ⊢ p›

| A2: ‹A ⊢ K i p ∧ K i (p ⟶ q) ⟶ K i q›

| Ax: ‹A p ⟹ A ⊢ p›

| R1: ‹A ⊢ p ⟹ A ⊢ p ⟶ q ⟹ A ⊢ q›

| R2: ‹A ⊢ p ⟹ A ⊢ K i p›

With A we can include different kinds of knowledge

We can work abstractly for as long as possible

23

Soundness

Some axioms are only valid on some types of graphs:

● K p ⟶ p requires self-arrows, etc.

When is our deduction method sound for graphs of type T?

When the axioms are all valid on graphs of type T:

theorem soundness:

 assumes ‹⋀M w q. A q ⟹ T M ⟹ w ∈ 𝒲 M ⟹ M, w ⊨ q›

 shows ‹A ⊢ p ⟹ T M ⟹ w ∈ 𝒲 M ⟹ M, w ⊨ p›

Instead of one theorem per axiom, we have a family of theorems

24

Completeness-via-Canonicity

Given a set of axioms, there is a canonical way to build a graph

● Axiom K p ⟶ K (K p) gives the canonical graph shortcut arrows

 Completeness-via-canonicity arguments are well known:

● Prove that your axioms give the canonical graph property T
+ Get completeness for your logic on graphs of type T

corollary completeness:

 assumes ‹T; {} ⊫ p› and ‹T (canonical A)›

 shows ‹A ⊢ p›

25

Public Announcement Logic

Someone says r and we believe them
This changes the graph of our uncertainty

Syntax is epistemic logic +

● [r!] p “after the announcement of r, p is true”
“considering only worlds satisfying r, p is true”

Examples:

● [x!] K x “we are told the sky is blue, so now we know”
● [⊥!] K p “we are told a lie, so now we know everything”

announcing x

26

Soundness and Completeness

Soundness requires well behaved announcements:

● Axioms A are valid on graphs of type T

● Announcements preserve property T

+ Soundness of PAL+A on graphs of type T

Public announcements are shorthand for pure epistemic logic:

● EL completeness for axioms A on graphs of type T

+ PAL completeness for axioms A on graphs of type T

27

Aesop: Proof Search for Lean 4
Collaboration with Jannis Limperg

28

Lean 4

A proof assistant based on dependent type theory

Younger than Isabelle/HOL

How do we get the same automation?

+ ⊢ p ⟶ q ⟶ p ∧ q
+ p ⊢ q ⟶ p ∧ q
+ p, q ⊢ p ∧ q
+ p, q ⊢ q
+ p, q ⊢ p

29

Search Tree

We have a goal we want to prove

+ ⊢ p ⟶ q ⟶ p ∧ q

We have rules that transform goals into subgoals

● A ⊢ p
● A ⊢ q
+ A ⊢ p ∧ q

Some rules have no subgoals

Build a tree!

30

How to Expand the Tree?

Many paths lead nowhere

● Give each rule a success probability

● Start at goal priority 100%

● Multiply to get subgoal priority

Always work on the goal with highest priority

(values for illustration only)

31

Metavariables

Recall implication elimination:

● A ⊢ p ⟶ q
● A ⊢ p
+ A ⊢ q

When we use it, how do we guess p?

● Leave a ?hole for a later rule to fill in

● Fill a copy of the other subgoal with the same solution

32

Applications

Used by the mathlib project in porting from Lean 3 to Lean 4.

They have extended it to special situations:

● aesop trivial proofs

● aesop_cat category theory

● aesop_graph graph theory

● Sym2 algebra

● continuity topology

33

Abstract Synthetic Completeness Framework

34

Synthetic Completeness?

Proving soundness is usually easy: (only good things)

● Each axiom and rule makes sense

Proving completeness is trickier: (every good thing)

● We have enough rules and axioms

Two main approaches:

● Analytic: build countermodels from failing proof attempts
● Synthetic: build models for consistent sets

35

Formalized Synthetic Completeness

The synthetic method works for many logics:

● modal and hybrid logic
● first-order logic
● second-order logic

By formalizing it we get:

● Computer assistance in applying it
● Interactive documentation
● Assurance of its correctness

36

Maximal Consistent Sets

Assumptions that prove falsity, A ⊢ ⊥, are contradictory, “in conflict”

Say we have a consistent, “harmonious” set of formulas Sn

(Sketch) We can go through every possible formula:

● If adding it preserves consistency, add it

● If adding it creates a contradiction, leave it out

In the end every formula or its negation is in there

Isabelle/HOL only superficially different from set theory

37

Witnesses

We want a few more formulas, though:

● For “there exists someone mortal”, we want, e.g., “Socrates is mortal”

Using “Socrates” again and again could lead to a contradiction

● In set theory, they add extra words for “Aristotle”, “Plato”, etc.

● In Isabelle/HOL, this changes the type of the language

I assume enough witnesses from the start

Slightly different ceremony but much the same

38

Requirements

All of this can be done abstractly:

● Subsets of consistent sets are consistent
● Inconsistent sets have finite inconsistencies
● There are infinitely many formulas
+ Maximal consistent sets

● Formulas and their witnesses are finite
● Fresh witnesses preserve consistency
● We have enough witnesses
+ Witnessed maximal consistent sets

39

Where is my Completeness?

The semantics has a certain shape:

● The truth of a formula depends on the truth of its parts
in a certain way

If we can prove that MCSs have the same shape:

● The membership of a formula depends on the membership of its parts
in the same way

Then we can relate truth and membership

What is the shape we are looking for?

40

From Semantics to Semics

Recall when a propositional formula is true:

● a prop. symbol: x, y when the interpretation says so
● falsity: ⊥ never
● a conjunction: p ∧ q p is true and q is true

This is self-referential. We can leave a hole [] instead:

● a prop. symbol: x, y when the interpretation says so
● falsity: ⊥ never
● a conjunction: p ∧ q p [] and q []

41

Filling Holes

Now we can use this shape:

p ∧ q is in MCS if and only if p is in MCS and q is in MCS

Old functional programming trick:

● Take a recursive definition

● Abstract away the recursive occurrences

❏ Filling in the [original semantics] gives the original semantics

❏ The fixpoint [semics] is the original semantics

42

Resulting Framework

We can build MCSs for at least:

● propositional tableau and sequent calculus
● first-order and hybrid logic natural deduction
● modal logic system K

The semics trick is useful when the logic has a Cut rule

Future work:

● A semics equation for downwards saturated sets (if and only if)
● Formalize compactness theorem for uncountable languages?

43

Conclusion

44

Conclusion

Different logics can express different things

Proof assistants can help us with our reasoning

● Encourage proof engineering

● Automate trivial proofs

● Express general frameworks

There are many cool logics out there

Go formalize their completeness

45

