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Introduction

Several benefits to formalizing proofs:

• Less room for error (if any).

• No parts left as exercise for the reader.

• Proof can be explored interactively.

• It’s fun!

At DTU we are interested in natural deduction for teaching purposes
(NaDeA).

Abstract referred to my extension of Berghofer’s work.
For continuity with previous talk I will use NaDeA here.
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Agenda

• Isabelle & NaDeA

• Soundness

• Closed Formulas

• Open Formulas

• Conclusion
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Isabelle & NaDeA
Syntax

LCF-style theorem prover based on Higher-Order Logic (HOL).
All proofs go through (small) kernel of axioms and inference rules.
Like functional programming with datatypes for First-Order Logic.
Proofs are written in the declarative language Isar.

Terms
type-synonym id = char list

datatype tm = Var nat | Fun id tm list

Formulas
datatype fm = Falsity | Pre id tm list | Imp fm fm | Dis fm fm | Con fm fm | Exi
fm | Uni fm
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Isabelle & NaDeA
Semantics I

Type variable ′a encodes domain.
Environment e :: nat ⇒ ′a.
Function denotation: f :: id ⇒ ′a list ⇒ ′a.

Terms
primrec

semantics-term :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a and
semantics-list :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list where
semantics-term e f (Var n) = e n |
semantics-term e f (Fun i l) = f i (semantics-list e f l) |
semantics-list e f [] = [] |
semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l
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Isabelle & NaDeA
Semantics II

Predicate denotation: g :: id ⇒ ′a list ⇒ bool.

Formulas
primrec

semantics :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ bool) ⇒ fm ⇒ bool
where

semantics e f g Falsity = False |
semantics e f g (Pre i l) = g i (semantics-list e f l) |
semantics e f g (Imp p q) = (if semantics e f g p then semantics e f g q else True) |
semantics e f g (Dis p q) = (if semantics e f g p then True else semantics e f g q) |
semantics e f g (Con p q) = (if semantics e f g p then semantics e f g q else False) |
semantics e f g (Exi p) = (∃ x. semantics (λn. if n = 0 then x else e (n − 1)) f g p) |
semantics e f g (Uni p) = (∀ x. semantics (λn. if n = 0 then x else e (n − 1)) f g p)
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Isabelle & NaDeA
From rule to code

φ ∈ Γ
Γ ` φ assum

p ∈ z
z ` p assum

member p z
OK p z Assume

Assume: member p z =⇒ OK p z
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Isabelle & NaDeA
OK

inductive OK :: fm ⇒ fm list ⇒ bool where
Assume: member p z =⇒ OK p z |
Boole: OK Falsity ((Imp p Falsity) # z) =⇒ OK p z |
Imp-E: OK (Imp p q) z =⇒ OK p z =⇒ OK q z |
Imp-I: OK q (p # z) =⇒ OK (Imp p q) z |
Dis-E: OK (Dis p q) z =⇒ OK r (p # z) =⇒ OK r (q # z) =⇒ OK r z |
Dis-I1: OK p z =⇒ OK (Dis p q) z |
Dis-I2: OK q z =⇒ OK (Dis p q) z |
Con-E1: OK (Con p q) z =⇒ OK p z |
Con-E2: OK (Con p q) z =⇒ OK q z |
Con-I: OK p z =⇒ OK q z =⇒ OK (Con p q) z |
Exi-E: OK (Exi p) z =⇒ OK q ((sub 0 (Fun c []) p) # z) =⇒

news c (p # q # z) =⇒ OK q z |
Exi-I: OK (sub 0 t p) z =⇒ OK (Exi p) z |
Uni-E: OK (Uni p) z =⇒ OK (sub 0 t p) z |
Uni-I: OK (sub 0 (Fun c []) p) z =⇒ news c (p # z) =⇒ OK (Uni p) z
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Soundness
Soundness

Context
lemma soundness ′:

OK p z =⇒ list-all (semantics e f g) z =⇒ semantics e f g p

Proof by induction over inference rules. Written declaratively:

case (Uni-I c p z)
then have ∀ x. list-all (semantics e (f(c := λw. x)) g) z

by simp
then have ∀ x. semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)

using Uni-I by blast
then have ∀ x. semantics (put e 0 x) (f(c := λw. x)) g p

by simp
then have ∀ x. semantics (put e 0 x) f g p

using news c (p # z) by simp
then show semantics e f g (Uni p)

by simp
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Closed Formulas
Completeness
Proof by Fitting in First-Order Logic and Automated Theorem Proving.
Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics

• Consistency property, C

• Alternative consistency, C+

• Finite character, C∗

• Maximal extension, H. Is Hintikka, has an Herbrand model

Dependent on inference rules

• Show consistency of formulas from which false cannot be derived.

Completeness via contradiction

• Assume p is (closed and) valid but not derivable

• Then {¬p} ∈ C (no contradiction without p), has a model
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Open Formulas
Standard trick

Standard textbook trick for open formulas: Just universally close it!

x→ x ; ∀x. x→ x

Then we obtain a derivation for a syntactically different formula.

Open formulas are well-defined in our formalization. We should treat them
as such.

This might teach students something about environments etc.
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Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p
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Open Formulas
Premises to implications

Turn environment into chain of implications:

primrec put-imps :: fm ⇒ fm list ⇒ fm where
put-imps p [] = p |
put-imps p (q # z) = Imp q (put-imps p z)

This behaves as expected with regards to the semantics:

lemma semantics-put-imps:
(list-all (semantics e f g) z −→ semantics e f g p) =
semantics e f g (put-imps p z)

by (induct z) auto
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Open Formulas
Universal closure

Put a number of universal quantifiers in front:

primrec put-unis :: nat ⇒ fm ⇒ fm where
put-unis 0 p = p |
put-unis (Suc m) p = Uni (put-unis m p)

This preserves validity:

lemma valid-put-unis: ∀ (e :: nat ⇒ ′a) f g. semantics e f g p =⇒
semantics (e :: nat ⇒ ′a) f g (put-unis m p)

by (induct m arbitrary: e) simp-all

The universal closure exists:

lemma ex-closure: ∃m. sentence (put-unis m p)
using ex-closed closed-put-unis by simp
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Open Formulas
Obtain proof

We can combine the above to obtain our derivation:

let ?p = put-imps p (rev z)

have ∗: ∀ (e :: nat ⇒ ′a) f g. semantics e f g ?p
using assms semantics-put-imps by fastforce

obtain m where ∗∗: sentence (put-unis m ?p)
using ex-closure by blast

moreover have ∀ (e :: nat ⇒ ′a) f g. semantics e f g (put-unis m ?p)
using ∗ valid-put-unis by blast

ultimately have OK (put-unis m ?p) []
using assms sentence-completeness by blast

Next step: Work within proof system to derive open formula from this.
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Open Formulas
Direct closure elimination

Tricky to eliminate quantifiers directly with de Bruijn indices.

Example

(∀∀p(0, 1, 2))[2/0] ; ∀((∀p(0, 1, 2))[3/1]) ; ∀∀(p(0, 1, 2)[4/2]) ; ∀∀p(0, 1, 4)
(∀p(0, 1, 4))[1/0] ; ∀(p(0, 1, 4)[2/1]) ; ∀p(0, 2, 3)

p(0, 2, 3)[0/0] ;p(0, 1, 2)

Previously substituted variables are adjusted by subsequent substitutions.

Idea: Eliminate with (fresh) constants instead!

fun consts-for-unis :: fm ⇒ id list ⇒ fm where
consts-for-unis (Uni p) (c#cs) = consts-for-unis (sub 0 (Fun c []) p) cs |
consts-for-unis p - = p
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Open Formulas
Constant substitution

New type of substitution: subc c s p replaces occurences of c with s in p,
adjusting s when passing a quantifier.
Disadvantage: Have to reprove many substitution lemmas for subc.

We prove the new rule admissible:

lemma OK-subc: OK p z =⇒ OK (subc c s p) (subcs c s z)

Trivial for everything except cases with quantifiers, newness, e.g. witness in
Exi-E rule.
Requires renaming:

lemma OK-psubst: OK p z =⇒ OK (psubst f p) (map (psubst f) z)
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Open Formulas
Telescoping closure elimination

Composing closure elimination with constant substitution yields telescoping
sequence:

subc c0 (m-1) (subc c1 (m-2) (. . . (subc cm−1 0 (sub 0 cm−1 . . . ))))

Each introduced constant is immediately substituted with correct variable.
Subsequent substitutions do not adjust previous variables.

lemma vars-for-consts-for-unis:
closed (length cs) p =⇒ list-all (λc. new c p) cs =⇒ distinct cs =⇒
vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs = p

theorem remove-unis: OK (put-unis m p) [] =⇒ OK p []
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Open Formulas
Implications to premises

For p→ q, weaken assumptions with p, then use modus ponens.

lemma shift-imp-assum:
assumes OK (Imp p q) z
shows OK q (p # z)

proof −
have set z ⊆ set (p # z)

by auto
then have OK (Imp p q) (p # z)

using assms weaken-assumptions by blast
moreover have OK p (p # z)

using Assume by simp
ultimately show OK q (p # z)

using Imp-E by blast
qed
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Open Formulas
Weaken assumptions

lemma weaken-assumptions: OK p z =⇒ set z ⊆ set z ′ =⇒ OK p z ′

Shown by induction over inference rules.
Trivial, except for Exi-E and Uni-I, where newness is required: The new
constant given by the induction hypothesis is not necessarily new under the
bigger premises.
Again, renaming is necessary.

Remove chain of implications by induction:

lemma remove-imps: OK (put-imps p z) z ′ =⇒ OK p (rev z @ z ′)
using shift-imp-assum by (induct z arbitrary: z ′) simp-all
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Open Formulas
Completeness

We can now finish the completeness proof:

let ?p = put-imps p (rev z)

have ∗: ∀ (e :: nat ⇒ ′a) f g. semantics e f g ?p
using assms semantics-put-imps by fastforce

obtain m where ∗∗: sentence (put-unis m ?p)
using ex-closure by blast

moreover have ∀ (e :: nat ⇒ ′a) f g. semantics e f g (put-unis m ?p)
using ∗ valid-put-unis by blast

ultimately have OK (put-unis m ?p) []
using assms sentence-completeness by blast

then have OK ?p []
using ∗∗ remove-unis by blast

then show OK p z
using remove-imps by fastforce
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Conclusion
Conclusion

• NaDeA is sound and complete.

• Also for open formulas.
• Standard results like renaming, weakening arise naturally in proof.

• Formalization ensures tricky cases are treated properly.

• Formalization may also introduce complexity, e.g. de Bruijn indices.
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