
Formalized Soundness and Completeness of Natural Deduction
for First-Order Logic

Local Isabelle Workshop 6/6 2018

Andreas Halkjær From

Introduction

Several benefits to formalizing proofs:

• Less room for error (if any).

• No parts left as exercise for the reader.

• Proof can be explored interactively.

• It’s fun!

At DTU we are interested in natural deduction for teaching purposes
(NaDeA).

Abstract referred to my extension of Berghofer’s work.
For continuity with previous talk I will use NaDeA here.

2 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Agenda

• Isabelle & NaDeA

• Soundness

• Closed Formulas

• Open Formulas

• Conclusion

3 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
Syntax

LCF-style theorem prover based on Higher-Order Logic (HOL).
All proofs go through (small) kernel of axioms and inference rules.
Like functional programming with datatypes for First-Order Logic.
Proofs are written in the declarative language Isar.

Terms
type-synonym id = char list

datatype tm = Var nat | Fun id tm list

Formulas
datatype fm = Falsity | Pre id tm list | Imp fm fm | Dis fm fm | Con fm fm | Exi
fm | Uni fm

4 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
Syntax

LCF-style theorem prover based on Higher-Order Logic (HOL).
All proofs go through (small) kernel of axioms and inference rules.
Like functional programming with datatypes for First-Order Logic.
Proofs are written in the declarative language Isar.

Terms
type-synonym id = char list

datatype tm = Var nat | Fun id tm list

Formulas
datatype fm = Falsity | Pre id tm list | Imp fm fm | Dis fm fm | Con fm fm | Exi
fm | Uni fm

4 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
Semantics I

Type variable ′a encodes domain.
Environment e :: nat ⇒ ′a.
Function denotation: f :: id ⇒ ′a list ⇒ ′a.

Terms
primrec

semantics-term :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a and
semantics-list :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list where
semantics-term e f (Var n) = e n |
semantics-term e f (Fun i l) = f i (semantics-list e f l) |
semantics-list e f [] = [] |
semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l

5 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
Semantics II

Predicate denotation: g :: id ⇒ ′a list ⇒ bool.

Formulas
primrec

semantics :: (nat ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ bool) ⇒ fm ⇒ bool
where

semantics e f g Falsity = False |
semantics e f g (Pre i l) = g i (semantics-list e f l) |
semantics e f g (Imp p q) = (if semantics e f g p then semantics e f g q else True) |
semantics e f g (Dis p q) = (if semantics e f g p then True else semantics e f g q) |
semantics e f g (Con p q) = (if semantics e f g p then semantics e f g q else False) |
semantics e f g (Exi p) = (∃ x. semantics (λn. if n = 0 then x else e (n − 1)) f g p) |
semantics e f g (Uni p) = (∀ x. semantics (λn. if n = 0 then x else e (n − 1)) f g p)

6 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
From rule to code

φ ∈ Γ
Γ ` φ assum

p ∈ z
z ` p assum

member p z
OK p z Assume

Assume: member p z =⇒ OK p z

7 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
From rule to code

φ ∈ Γ
Γ ` φ assum

p ∈ z
z ` p assum

member p z
OK p z Assume

Assume: member p z =⇒ OK p z

7 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
From rule to code

φ ∈ Γ
Γ ` φ assum

p ∈ z
z ` p assum

member p z
OK p z Assume

Assume: member p z =⇒ OK p z

7 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
From rule to code

φ ∈ Γ
Γ ` φ assum

p ∈ z
z ` p assum

member p z
OK p z Assume

Assume: member p z =⇒ OK p z

7 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Isabelle & NaDeA
OK

inductive OK :: fm ⇒ fm list ⇒ bool where
Assume: member p z =⇒ OK p z |
Boole: OK Falsity ((Imp p Falsity) # z) =⇒ OK p z |
Imp-E: OK (Imp p q) z =⇒ OK p z =⇒ OK q z |
Imp-I: OK q (p # z) =⇒ OK (Imp p q) z |
Dis-E: OK (Dis p q) z =⇒ OK r (p # z) =⇒ OK r (q # z) =⇒ OK r z |
Dis-I1: OK p z =⇒ OK (Dis p q) z |
Dis-I2: OK q z =⇒ OK (Dis p q) z |
Con-E1: OK (Con p q) z =⇒ OK p z |
Con-E2: OK (Con p q) z =⇒ OK q z |
Con-I: OK p z =⇒ OK q z =⇒ OK (Con p q) z |
Exi-E: OK (Exi p) z =⇒ OK q ((sub 0 (Fun c []) p) # z) =⇒

news c (p # q # z) =⇒ OK q z |
Exi-I: OK (sub 0 t p) z =⇒ OK (Exi p) z |
Uni-E: OK (Uni p) z =⇒ OK (sub 0 t p) z |
Uni-I: OK (sub 0 (Fun c []) p) z =⇒ news c (p # z) =⇒ OK (Uni p) z

8 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Soundness
Soundness

Context
lemma soundness ′:

OK p z =⇒ list-all (semantics e f g) z =⇒ semantics e f g p

Proof by induction over inference rules. Written declaratively:

case (Uni-I c p z)
then have ∀ x. list-all (semantics e (f(c := λw. x)) g) z

by simp
then have ∀ x. semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)

using Uni-I by blast
then have ∀ x. semantics (put e 0 x) (f(c := λw. x)) g p

by simp
then have ∀ x. semantics (put e 0 x) f g p

using news c (p # z) by simp
then show semantics e f g (Uni p)

by simp

9 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Closed Formulas
Completeness
Proof by Fitting in First-Order Logic and Automated Theorem Proving.
Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics

• Consistency property, C

• Alternative consistency, C+

• Finite character, C∗

• Maximal extension, H. Is Hintikka, has an Herbrand model

Dependent on inference rules

• Show consistency of formulas from which false cannot be derived.

Completeness via contradiction

• Assume p is (closed and) valid but not derivable

• Then {¬p} ∈ C (no contradiction without p), has a model

10 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Closed Formulas
Completeness
Proof by Fitting in First-Order Logic and Automated Theorem Proving.
Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics

• Consistency property, C

• Alternative consistency, C+

• Finite character, C∗

• Maximal extension, H. Is Hintikka, has an Herbrand model

Dependent on inference rules

• Show consistency of formulas from which false cannot be derived.

Completeness via contradiction

• Assume p is (closed and) valid but not derivable

• Then {¬p} ∈ C (no contradiction without p), has a model

10 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Closed Formulas
Completeness
Proof by Fitting in First-Order Logic and Automated Theorem Proving.
Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics

• Consistency property, C

• Alternative consistency, C+

• Finite character, C∗

• Maximal extension, H. Is Hintikka, has an Herbrand model

Dependent on inference rules

• Show consistency of formulas from which false cannot be derived.

Completeness via contradiction

• Assume p is (closed and) valid but not derivable

• Then {¬p} ∈ C (no contradiction without p), has a model

10 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Standard trick

Standard textbook trick for open formulas: Just universally close it!

x→ x ; ∀x. x→ x

Then we obtain a derivation for a syntactically different formula.

Open formulas are well-defined in our formalization. We should treat them
as such.

This might teach students something about environments etc.

11 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Strategy

Starting point p
?
` x→ p

Premises to implications
?
` p→ x→ p

Universally close formula
?
` ∀x. p→ x→ p

Obtain proof ` ∀x. p→ x→ p

Eliminate quantifiers with constants ` p→ c→ p

Substitute constants with variables ` p→ x→ p

Implications back to premises p ` x→ p

12 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Premises to implications

Turn environment into chain of implications:

primrec put-imps :: fm ⇒ fm list ⇒ fm where
put-imps p [] = p |
put-imps p (q # z) = Imp q (put-imps p z)

This behaves as expected with regards to the semantics:

lemma semantics-put-imps:
(list-all (semantics e f g) z −→ semantics e f g p) =
semantics e f g (put-imps p z)

by (induct z) auto

13 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Premises to implications

Turn environment into chain of implications:

primrec put-imps :: fm ⇒ fm list ⇒ fm where
put-imps p [] = p |
put-imps p (q # z) = Imp q (put-imps p z)

This behaves as expected with regards to the semantics:

lemma semantics-put-imps:
(list-all (semantics e f g) z −→ semantics e f g p) =
semantics e f g (put-imps p z)

by (induct z) auto

13 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Universal closure

Put a number of universal quantifiers in front:

primrec put-unis :: nat ⇒ fm ⇒ fm where
put-unis 0 p = p |
put-unis (Suc m) p = Uni (put-unis m p)

This preserves validity:

lemma valid-put-unis: ∀ (e :: nat ⇒ ′a) f g. semantics e f g p =⇒
semantics (e :: nat ⇒ ′a) f g (put-unis m p)

by (induct m arbitrary: e) simp-all

The universal closure exists:

lemma ex-closure: ∃m. sentence (put-unis m p)
using ex-closed closed-put-unis by simp

14 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Universal closure

Put a number of universal quantifiers in front:

primrec put-unis :: nat ⇒ fm ⇒ fm where
put-unis 0 p = p |
put-unis (Suc m) p = Uni (put-unis m p)

This preserves validity:

lemma valid-put-unis: ∀ (e :: nat ⇒ ′a) f g. semantics e f g p =⇒
semantics (e :: nat ⇒ ′a) f g (put-unis m p)

by (induct m arbitrary: e) simp-all

The universal closure exists:

lemma ex-closure: ∃m. sentence (put-unis m p)
using ex-closed closed-put-unis by simp

14 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Universal closure

Put a number of universal quantifiers in front:

primrec put-unis :: nat ⇒ fm ⇒ fm where
put-unis 0 p = p |
put-unis (Suc m) p = Uni (put-unis m p)

This preserves validity:

lemma valid-put-unis: ∀ (e :: nat ⇒ ′a) f g. semantics e f g p =⇒
semantics (e :: nat ⇒ ′a) f g (put-unis m p)

by (induct m arbitrary: e) simp-all

The universal closure exists:

lemma ex-closure: ∃m. sentence (put-unis m p)
using ex-closed closed-put-unis by simp

14 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Obtain proof

We can combine the above to obtain our derivation:

let ?p = put-imps p (rev z)

have ∗: ∀ (e :: nat ⇒ ′a) f g. semantics e f g ?p
using assms semantics-put-imps by fastforce

obtain m where ∗∗: sentence (put-unis m ?p)
using ex-closure by blast

moreover have ∀ (e :: nat ⇒ ′a) f g. semantics e f g (put-unis m ?p)
using ∗ valid-put-unis by blast

ultimately have OK (put-unis m ?p) []
using assms sentence-completeness by blast

Next step: Work within proof system to derive open formula from this.

15 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Direct closure elimination

Tricky to eliminate quantifiers directly with de Bruijn indices.

Example

(∀∀p(0, 1, 2))[2/0] ; ∀((∀p(0, 1, 2))[3/1]) ; ∀∀(p(0, 1, 2)[4/2]) ; ∀∀p(0, 1, 4)
(∀p(0, 1, 4))[1/0] ; ∀(p(0, 1, 4)[2/1]) ; ∀p(0, 2, 3)

p(0, 2, 3)[0/0] ;p(0, 1, 2)

Previously substituted variables are adjusted by subsequent substitutions.

Idea: Eliminate with (fresh) constants instead!

fun consts-for-unis :: fm ⇒ id list ⇒ fm where
consts-for-unis (Uni p) (c#cs) = consts-for-unis (sub 0 (Fun c []) p) cs |
consts-for-unis p - = p

16 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Direct closure elimination

Tricky to eliminate quantifiers directly with de Bruijn indices.

Example

(∀∀p(0, 1, 2))[2/0] ; ∀((∀p(0, 1, 2))[3/1]) ; ∀∀(p(0, 1, 2)[4/2]) ; ∀∀p(0, 1, 4)
(∀p(0, 1, 4))[1/0] ; ∀(p(0, 1, 4)[2/1]) ; ∀p(0, 2, 3)

p(0, 2, 3)[0/0] ;p(0, 1, 2)

Previously substituted variables are adjusted by subsequent substitutions.

Idea: Eliminate with (fresh) constants instead!

fun consts-for-unis :: fm ⇒ id list ⇒ fm where
consts-for-unis (Uni p) (c#cs) = consts-for-unis (sub 0 (Fun c []) p) cs |
consts-for-unis p - = p

16 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Constant substitution

New type of substitution: subc c s p replaces occurences of c with s in p,
adjusting s when passing a quantifier.
Disadvantage: Have to reprove many substitution lemmas for subc.

We prove the new rule admissible:

lemma OK-subc: OK p z =⇒ OK (subc c s p) (subcs c s z)

Trivial for everything except cases with quantifiers, newness, e.g. witness in
Exi-E rule.
Requires renaming:

lemma OK-psubst: OK p z =⇒ OK (psubst f p) (map (psubst f) z)

17 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Constant substitution

New type of substitution: subc c s p replaces occurences of c with s in p,
adjusting s when passing a quantifier.
Disadvantage: Have to reprove many substitution lemmas for subc.
We prove the new rule admissible:

lemma OK-subc: OK p z =⇒ OK (subc c s p) (subcs c s z)

Trivial for everything except cases with quantifiers, newness, e.g. witness in
Exi-E rule.
Requires renaming:

lemma OK-psubst: OK p z =⇒ OK (psubst f p) (map (psubst f) z)

17 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Telescoping closure elimination

Composing closure elimination with constant substitution yields telescoping
sequence:

subc c0 (m-1) (subc c1 (m-2) (. . . (subc cm−1 0 (sub 0 cm−1 . . .))))

Each introduced constant is immediately substituted with correct variable.
Subsequent substitutions do not adjust previous variables.

lemma vars-for-consts-for-unis:
closed (length cs) p =⇒ list-all (λc. new c p) cs =⇒ distinct cs =⇒
vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs = p

theorem remove-unis: OK (put-unis m p) [] =⇒ OK p []

18 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Telescoping closure elimination

Composing closure elimination with constant substitution yields telescoping
sequence:

subc c0 (m-1) (subc c1 (m-2) (. . . (subc cm−1 0 (sub 0 cm−1 . . .))))

Each introduced constant is immediately substituted with correct variable.
Subsequent substitutions do not adjust previous variables.

lemma vars-for-consts-for-unis:
closed (length cs) p =⇒ list-all (λc. new c p) cs =⇒ distinct cs =⇒
vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) cs = p

theorem remove-unis: OK (put-unis m p) [] =⇒ OK p []

18 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Implications to premises

For p→ q, weaken assumptions with p, then use modus ponens.

lemma shift-imp-assum:
assumes OK (Imp p q) z
shows OK q (p # z)

proof −
have set z ⊆ set (p # z)

by auto
then have OK (Imp p q) (p # z)

using assms weaken-assumptions by blast
moreover have OK p (p # z)

using Assume by simp
ultimately show OK q (p # z)

using Imp-E by blast
qed

19 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Weaken assumptions

lemma weaken-assumptions: OK p z =⇒ set z ⊆ set z ′ =⇒ OK p z ′

Shown by induction over inference rules.
Trivial, except for Exi-E and Uni-I, where newness is required: The new
constant given by the induction hypothesis is not necessarily new under the
bigger premises.
Again, renaming is necessary.

Remove chain of implications by induction:

lemma remove-imps: OK (put-imps p z) z ′ =⇒ OK p (rev z @ z ′)
using shift-imp-assum by (induct z arbitrary: z ′) simp-all

20 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Weaken assumptions

lemma weaken-assumptions: OK p z =⇒ set z ⊆ set z ′ =⇒ OK p z ′

Shown by induction over inference rules.
Trivial, except for Exi-E and Uni-I, where newness is required: The new
constant given by the induction hypothesis is not necessarily new under the
bigger premises.
Again, renaming is necessary.

Remove chain of implications by induction:

lemma remove-imps: OK (put-imps p z) z ′ =⇒ OK p (rev z @ z ′)
using shift-imp-assum by (induct z arbitrary: z ′) simp-all

20 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Open Formulas
Completeness

We can now finish the completeness proof:

let ?p = put-imps p (rev z)

have ∗: ∀ (e :: nat ⇒ ′a) f g. semantics e f g ?p
using assms semantics-put-imps by fastforce

obtain m where ∗∗: sentence (put-unis m ?p)
using ex-closure by blast

moreover have ∀ (e :: nat ⇒ ′a) f g. semantics e f g (put-unis m ?p)
using ∗ valid-put-unis by blast

ultimately have OK (put-unis m ?p) []
using assms sentence-completeness by blast

then have OK ?p []
using ∗∗ remove-unis by blast

then show OK p z
using remove-imps by fastforce

21 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Conclusion
Conclusion

• NaDeA is sound and complete.

• Also for open formulas.
• Standard results like renaming, weakening arise naturally in proof.

• Formalization ensures tricky cases are treated properly.

• Formalization may also introduce complexity, e.g. de Bruijn indices.

22 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

Conclusion
References

Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel, Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, vol. 2283, Lecture Notes in Computer Science,
Springer, 2002.

Stefan Berghofer, First-Order Logic According to Fitting, Archive of Formal Proofs,
August 2007. http://isa-afp.org/entries/FOL-Fitting.html

Melvin Fitting, First-Order Logic and Automated Theorem Proving, Second Edition,
Graduate Texts in Computer Science, Springer, 1996.

Markus Wenzel, Isar — A Generic Interpretative Approach to Readable Formal Proof
Documents, Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, September, Proceedings (Nice, France), (Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin-Mohring and Laurent Théry, editors), vol. 1690, Lecture Notes
in Computer Science, Springer, 1999, pp. 167–184.

Jørgen Villadsen, Andreas Halkjær From and Anders Schlichtkrull, Natural
Deduction and the Isabelle Proof Assistant, Proceedings 6th International Workshop on
Theorem proving components for Educational software (Gothenburg, Sweden), (Pedro
Quaresma and Walther Neuper, editors), vol. 267, Electronic Proceedings in Theoretical
Computer Science, Open Publishing Association, 2018, pp. 140–155.
http://eptcs.org/paper.cgi?ThEdu17.9

23 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 6/6 2018

http://isa-afp.org/entries/FOL-Fitting.html
http://eptcs.org/paper.cgi?ThEdu17.9

	Isabelle & NaDeA
	Soundness
	Closed Formulas
	Open Formulas
	Conclusion

