Formalized Soundness and Completeness of Natural Deduction for First-Order Logic

Scandinavian Logic Symposium 2018

Andreas Halkjær From

DTU Compute
Department of Applied Mathematics and Computer Science

Introduction

Several benefits to formalizing proofs:

- Less room for error (if any).
- No parts left as exercise for the reader.
- Proof can be explored interactively.
- It's fun!

At DTU we are interested in natural deduction for teaching purposes ($\mathrm{NaDeA} \mathrm{)}$.

Abstract referred to my extension of Berghofer's work. For continuity with previous talk I will use NaDeA here.

Agenda

- Isabelle \& NaDeA
- Soundness
- Closed Formulas
- Open Formulas
- Conclusion

Syntax

LCF-style theorem prover based on Higher-Order Logic (HOL). All proofs go through (small) kernel of axioms and inference rules. Like functional programming with datatypes for First-Order Logic. Proofs are written in the declarative language Isar.

Syntax

LCF-style theorem prover based on Higher-Order Logic (HOL). All proofs go through (small) kernel of axioms and inference rules. Like functional programming with datatypes for First-Order Logic. Proofs are written in the declarative language Isar.

Terms

type-synonym id = char list
datatype $t m=$ Var nat \mid Fun id tm list

Formulas

datatype $\mathrm{fm}=$ Falsity \mid Pre id tm list $|\operatorname{Imp} \mathrm{fm} \mathrm{fm}|$ Dis fm fm \mid Con fm fm | Exi fm | Unifm

Semantics I

Type variable 'a encodes domain.
Environment e :: nat $\Rightarrow{ }^{\prime}$ a.
Function denotation: $f::$ id \Rightarrow 'a list \Rightarrow 'a.

Terms

primrec

semantics-term :: (nat \Rightarrow 'a) $\Rightarrow\left(i d \Rightarrow{ }^{\prime} a\right.$ list \Rightarrow ' $\left.a\right) \Rightarrow t m \Rightarrow$ 'a and semantics-list $::\left(\right.$ nat \Rightarrow 'a) $\Rightarrow\left(\right.$ id $\Rightarrow{ }^{\prime}$ a list \Rightarrow 'a) \Rightarrow tm list \Rightarrow 'a list where semantics-term ef $f($ Var $n)=$ e n |
semantics-term e $f($ Fun $i l)=f i($ semantics-list e $f l)$
semantics-list e $f[]=[] \mid$
semantics-list e $f(t \# I)=$ semantics-term ef $t \#$ semantics-list ef I

Semantics II

Predicate denotation: g :: id \Rightarrow 'a list \Rightarrow bool.

Formulas

primrec
semantics :: $\left(\right.$ nat $\Rightarrow{ }^{\prime}$ a $) \Rightarrow\left(i d \Rightarrow\right.$ 'a list $^{\prime}{ }^{\prime}$ 'a $) \Rightarrow\left(\right.$ id $\Rightarrow{ }^{\prime}$ a list \Rightarrow bool $) \Rightarrow \mathrm{fm} \Rightarrow$ bool
where
semantics e f g Falsity = False
semantics ef $g($ Pre $i l)=g i($ semantics-list ef $I) \mid$
semantics e $f g(\operatorname{Imp} p q)=($ if semantics e $f g p$ then semantics e $f g q$ else True) \mid
semantics e $f g($ Dis $p q)=($ if semantics e $f g p$ then True else semantics ef $g q) \mid$
semantics e $f g($ Con $p q)=($ if semantics e $f g p$ then semantics e $f g q$ else False)
semantics e $f g($ Exi $p)=(\exists x$. semantics $(\lambda n$. if $n=0$ then x else $e(n-1)) f g p) \mid$
semantics ef $g($ Uni $p)=(\forall x$. semantics $(\lambda n$. if $n=0$ then x else $e(n-1)) f g p)$

From rule to code

$$
\frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text { assum }
$$

From rule to code

$$
\begin{aligned}
& \frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text { assum } \\
& \frac{p \in z}{z \vdash p} \text { assum }
\end{aligned}
$$

From rule to code

$$
\begin{gathered}
\frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text { assum } \\
\frac{p \in z}{z \vdash p} \text { assum } \\
\frac{\text { member } p z}{\text { OK } p z} \text { Assume }
\end{gathered}
$$

From rule to code

$$
\begin{gathered}
\frac{\phi \in \Gamma}{\Gamma \vdash \phi} \text { assum } \\
\frac{p \in z}{z \vdash p} \text { assum } \\
\frac{\text { member } p z}{\text { OK } z} \text { Assume }
\end{gathered}
$$

Assume: member $p z \Longrightarrow O K p z$

```
inductive \(O K\) :: fm \(\Rightarrow\) fm list \(\Rightarrow\) bool where
    Assume: member \(p z \Longrightarrow\) OK \(p z \mid\)
    Boole: OK Falsity ((Imp p Falsity) \# z) \(\Longrightarrow\) OK pz|
    Imp-E: OK \((\operatorname{Imp} p q) z \Longrightarrow O K p z \Longrightarrow O K q z \mid\)
    Imp-I: OK \(q(p \# z) \Longrightarrow O K(\operatorname{Imp} p q) z \mid\)
    Dis-E: OK \((\operatorname{Dis} p q) z \Longrightarrow O K r(p \# z) \Longrightarrow O K r(q \# z) \Longrightarrow O K r z \mid\)
    Dis-I1: OK \(p z \Longrightarrow O K(\) Dis \(p q) z\)
    Dis-I2: OK \(q z \Longrightarrow O K(\) Dis \(p q) z \mid\)
    Con-E1: OK \((\operatorname{Con} p q) z \Longrightarrow O K p z\)
    Con-E2: OK \((\operatorname{Con} p q) z \Longrightarrow O K q z \mid\)
    Con-I: OK \(p z \Longrightarrow O K q z \Longrightarrow O K(C o n p q) z \mid\)
    Exi-E: OK (Exi p) z OK q \(((\operatorname{sub} 0(\) Fun \(c[]) p) \# z) \Longrightarrow\)
    news \(c(p \# q \# z) \Longrightarrow O K q z \mid\)
    Exi-I: OK (sub \(0 t p) z \Longrightarrow O K(E x i p) z \mid\)
    Uni-E: OK (Uni p) z OK (sub \(0 t p) z \mid\)
    Uni-I: OK (sub \(0(\) Fun \(c[]) p) z \Longrightarrow\) news \(c(p \# z) \Longrightarrow O K(U n i p) z\)
```


Soundness

Context

lemma soundness':
OK $p z \Longrightarrow$ list-all (semantics ef g) $z \Longrightarrow$ semantics ef $g p$
Proof by induction over inference rules (for arbitrary function denotation). Written declaratively:
case (Uni-I c p z)
then have $\forall x$. list-all (semantics e $(f(c:=\lambda w . x)) g) z \quad$ [c is fresh]
by simp

Soundness

Context

lemma soundness':
OK $p z \Longrightarrow$ list-all (semantics ef g) $z \Longrightarrow$ semantics ef $g p$
Proof by induction over inference rules (for arbitrary function denotation). Written declaratively:

```
case (Uni-I c p z)
then have }\forallx\mathrm{ . list-all (semantics e (f(c:= \w.x))g)z [c is fresh]
    by simp
then have }\forallx\mathrm{ . semantics e (f(c:= \w. x)) g(sub 0 (Fun c []) p)
    using Uni-l by blast
```


Soundness

Context

lemma soundness':
OK $p z \Longrightarrow$ list-all (semantics ef g) $z \Longrightarrow$ semantics ef $g p$
Proof by induction over inference rules (for arbitrary function denotation). Written declaratively:

```
case (Uni-I c p z)
then have }\forallx\mathrm{ . list-all (semantics e (f(c:= \w.x))g) z [c is fresh]
    by simp
then have }\forallx\mathrm{ . semantics e (f(c:= \w. x)) g(sub 0 (Fun c []) p)
    using Uni-I by blast
then have }\forallx\mathrm{ . semantics (put e 0x) (f(c:= \w.x))g p [subst. lemma]
    by simp
```


Soundness

Context

lemma soundness':
OK pz list-all (semantics efg) $z \Longrightarrow$ semantics ef $g p$
Proof by induction over inference rules (for arbitrary function denotation). Written declaratively:

```
case (Uni-I c p z)
then have }\forallx\mathrm{ . list-all (semantics e (f(c:= \w.x))g) z [c is fresh]
    by simp
then have }\forallx\mathrm{ . semantics e (f(c:= \w. x)) g(sub 0 (Fun c []) p)
    using Uni-l by blast
then have }\forallx\mathrm{ . semantics (put e 0x) (f(c:= \w.x))gp [subst. lemma]
    by simp
then have }\forallx\mathrm{ . semantics(put e 0x) fg p
[c is fresh again]
```


Soundness

Context

lemma soundness':
OK $p z \Longrightarrow$ list-all (semantics ef g) $z \Longrightarrow$ semantics ef $g p$
Proof by induction over inference rules (for arbitrary function denotation). Written declaratively:

```
case (Uni-I c p z)
then have }\forallx\mathrm{ . list-all (semantics e (f(c:= \w.x))g)z [c is fresh]
    by simp
then have }\forallx\mathrm{ . semantics e (f(c:= \w. x)) g(sub 0 (Fun c []) p)
    using Uni-l by blast
then have }\forallx\mathrm{ . semantics (put e 0x) (f(c:= \w.x))g p [subst. lemma]
    by simp
then have }\forallx\mathrm{ . semantics (put e 0x) fg p
[c is fresh again]
    using news c ( }p##z)\mathrm{ by simp
then show semantics e f g}\mathrm{ (Uni p)
[exactly semantics for Uni]
    by simp
```

$~ 100$ lines including helper lemmas.

Completeness

Proof by Fitting in First-Order Logic and Automated Theorem Proving. Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics (~ 1500 lines)

- Consistency property, C, on sets of formulas
- Alternative consistency, C^{+}
- Finite character, C^{*}
- Maximal extension, H, is Hintikka, sentences in H have Herbrand model

Completeness

Proof by Fitting in First-Order Logic and Automated Theorem Proving. Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics (~ 1500 lines)

- Consistency property, C, on sets of formulas
- Alternative consistency, C^{+}
- Finite character, C^{*}
- Maximal extension, H, is Hintikka, sentences in H have Herbrand model

Dependent on inference rules (~ 350 lines)

- Show consistency of formulas from which false cannot be derived.

Completeness

Proof by Fitting in First-Order Logic and Automated Theorem Proving. Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics ($\sim \mathbf{1 5 0 0}$ lines)

- Consistency property, C, on sets of formulas
- Alternative consistency, C^{+}
- Finite character, C^{*}
- Maximal extension, H, is Hintikka, sentences in H have Herbrand model

Dependent on inference rules (~ 350 lines)

- Show consistency of formulas from which false cannot be derived.

Completeness via contradiction (~ 40 lines)

- Assume p is (closed and) valid but not derivable
- Then $\{\neg p\} \in C$ (no contradiction without p), has a model

Completeness

Proof by Fitting in First-Order Logic and Automated Theorem Proving. Formalized by Berghofer for different natural deduction proof system.

Dependent on semantics (~ 1500 lines)

- Consistency property, C, on sets of formulas
- Alternative consistency, C^{+}
- Finite character, C^{*}
- Maximal extension, H, is Hintikka, sentences in H have Herbrand model

Dependent on inference rules (~ 350 lines)

- Show consistency of formulas from which false cannot be derived.

Completeness via contradiction (~ 40 lines)

- Assume p is (closed and) valid but not derivable
- Then $\{\neg p\} \in C$ (no contradiction without p), has a model
(+ ~200 lines for Löwenheim-Skolem, ~200 lines for any countably infinite universe)
10 DTU Compute Formalized Soundness and Completeness of Natural Deduction for First-Order Logic 2018-06-12

Standard trick

One trick for open formulas: Just universally close it!

$$
x \rightarrow x \quad \sim \quad \forall x \cdot x \rightarrow x
$$

Then we obtain a derivation for a syntactically different formula.

Open formulas are well-defined in our formalization. We should treat them properly.

This might teach students something about environments etc.

Strategy

How to reuse completeness proof for sentences.

Starting point

$$
p \stackrel{?}{\vdash} x \rightarrow p
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications

$$
\begin{aligned}
p \stackrel{?}{\dot{+}} x \rightarrow p \\
\stackrel{?}{\vdash} p \rightarrow x \rightarrow p
\end{aligned}
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications
Universally close formula

$$
\begin{aligned}
& p \stackrel{?}{\vdash} x \rightarrow p \\
& \stackrel{?}{\vdash} p \rightarrow x \rightarrow p \\
& \stackrel{?}{\vdash} \forall x \cdot p \rightarrow x \rightarrow p
\end{aligned}
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications
Universally close formula
Obtain proof

$$
\begin{aligned}
& p \stackrel{?}{\vdash} x \rightarrow p \\
& \stackrel{?}{\vdash} p \rightarrow x \rightarrow p \\
& \stackrel{?}{\vdash} \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash \forall x \cdot p \rightarrow x \rightarrow p
\end{aligned}
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications
Universally close formula
Obtain proof
Eliminate quantifiers with constants

$$
\begin{aligned}
& p \stackrel{?}{\vdash} x \rightarrow p \\
& \stackrel{?}{\vdash} p \rightarrow x \rightarrow p \\
& \stackrel{?}{\vdash} \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash p \rightarrow c \rightarrow p
\end{aligned}
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications
Universally close formula
Obtain proof
Eliminate quantifiers with constants
Substitute constants with variables

$$
\begin{aligned}
& p \stackrel{?}{\vdash} x \rightarrow p \\
& \stackrel{?}{\vdash} p \rightarrow x \rightarrow p \\
& \stackrel{?}{\vdash} \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash p \rightarrow c \rightarrow p \\
& \\
& \vdash p \rightarrow x \rightarrow p
\end{aligned}
$$

Strategy

How to reuse completeness proof for sentences.

Starting point
Premises to implications
Universally close formula
Obtain proof
Eliminate quantifiers with constants
Substitute constants with variables Implications back to premises

$$
\begin{aligned}
& p \stackrel{?}{\vdash} x \rightarrow p \\
& \stackrel{?}{\vdash} p \rightarrow x \rightarrow p \\
& \stackrel{?}{\vdash} \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash \forall x \cdot p \rightarrow x \rightarrow p \\
& \\
& \vdash p \rightarrow c \rightarrow p \\
& \vdash p \rightarrow x \rightarrow p \\
& p \vdash x \rightarrow p
\end{aligned}
$$

~ 1100 additional lines.

Open Formulas

Premises to implications

Turn premises into chain of implications:
primrec put-imps :: $\mathrm{fm} \Rightarrow \mathrm{fm}$ list $\Rightarrow \mathrm{fm}$ where

$$
\begin{aligned}
& \text { put-imps } p[]=p \mid \\
& \text { put-imps } p(q \# z)=\operatorname{Imp} q(\text { put-imps } p z)
\end{aligned}
$$

Open Formulas

Premises to implications

Turn premises into chain of implications:
primrec put-imps :: fm \Rightarrow fm list $\Rightarrow f m$ where
put-imps $p[]=p \mid$
put-imps $p(q \# z)=\operatorname{Imp} q($ put-imps $p z)$

This behaves as expected with regards to the semantics:
lemma semantics-put-imps:
(list-all (semantics efg) $z \longrightarrow$ semantics e $f g p$) $=$ semantics efg (put-imps pz)
by (induct z) auto

Open Formulas

Universal closure

Put a number of universal quantifiers in front:
primrec put-unis :: nat $\Rightarrow f m \Rightarrow f m$ where

```
    put-unis \(0 p=p\) |
    put-unis (Suc m) \(p=\) Uni (put-unis \(m p)\)
```


Open Formulas

Universal closure

Put a number of universal quantifiers in front:
primrec put-unis :: nat $\Rightarrow f m \Rightarrow f m$ where

$$
\begin{aligned}
& \text { put-unis } 0 p=p \mid \\
& \text { put-unis }(\text { Suc } m) p=\text { Uni }(\text { put-unis } m p)
\end{aligned}
$$

This preserves validity:
lemma valid-put-unis: $\forall\left(e::\right.$ nat $\left.\Rightarrow{ }^{\prime} a\right) f g$. semantics e $f g p \Longrightarrow$ semantics (e :: nat \Rightarrow 'a) $f g($ put-unis $m p)$ by (induct m arbitrary: e) simp-all

Universal closure

Put a number of universal quantifiers in front:
primrec put-unis :: nat $\Rightarrow f m \Rightarrow f m$ where

$$
\begin{aligned}
& \text { put-unis } 0 p=p \mid \\
& \text { put-unis }(\text { Suc } m) p=\text { Uni }(\text { put-unis } m p)
\end{aligned}
$$

This preserves validity:
lemma valid-put-unis: $\forall(e::$ nat \Rightarrow 'a) $f g$. semantics ef $g p \Longrightarrow$ semantics (e :: nat \Rightarrow 'a) $f g$ (put-unis $m p$) by (induct m arbitrary: e) simp-all

The universal closure exists:
lemma ex-closure: $\exists m$. sentence (put-unis $m p$) using ex-closed closed-put-unis by simp

Obtain proof

We can combine the above to obtain our derivation:
let $? p=$ put-imps $p(\operatorname{rev} z)$
have $*: \forall(e::$ nat \Rightarrow 'a) $f g$. semantics e $f g$?p
using assms semantics-put-imps by fastforce
obtain m where $* *$: sentence (put-unis m ? p) using ex-closure by blast
moreover have $\forall(e::$ nat \Rightarrow 'a) $f g$. semantics ef g (put-unis $m ? p)$ using * valid-put-unis by blast
ultimately have OK (put-unis $m ? p$) []
using assms sentence-completeness by blast
Next step: Work within proof system to derive open formula from this.

Direct closure elimination

Tricky to eliminate quantifiers directly with de Bruijn indices.

Example

$$
\begin{aligned}
& (\forall \forall p(0,1,2))[2 / 0] \sim \forall((\forall p(0,1,2))[3 / 1]) \sim \forall \forall(p(0,1,2)[4 / 2]) \sim \forall \forall p(0,1,4) \\
& (\forall p(0,1,4))[1 / 0] \sim \forall(p(0,1,4)[2 / 1]) \sim \forall p(0,2,3) \\
& p(0,2,3)[0 / 0] \sim p(0,1,2)
\end{aligned}
$$

Previously substituted variables are adjusted by subsequent substitutions.

Direct closure elimination

Tricky to eliminate quantifiers directly with de Bruijn indices.

Example

$$
\begin{aligned}
& (\forall \forall p(0,1,2))[2 / 0] \sim \forall((\forall p(0,1,2))[3 / 1]) \sim \forall \forall(p(0,1,2)[4 / 2]) \sim \forall \forall p(0,1,4) \\
& (\forall p(0,1,4))[1 / 0] \sim \forall(p(0,1,4)[2 / 1]) \sim \forall p(0,2,3) \\
& p(0,2,3)[0 / 0] \sim p(0,1,2)
\end{aligned}
$$

Previously substituted variables are adjusted by subsequent substitutions.
Idea: Eliminate with (fresh) constants instead!
fun consts-for-unis :: fm \Rightarrow id list \Rightarrow fm where
consts-for-unis (Uni p) (c\#cs) $=$ consts-for-unis (sub 0 (Fun c []) p) cs | consts-for-unis $p-=p$

Open Formulas

Constant substitution

New type of substitution: subc csp replaces occurences of c with s in p, adjusting s when passing a quantifier.
Disadvantage: Have to reprove many substitution lemmas for subc.

Constant substitution

New type of substitution: subc c sp replaces occurences of c with s in p, adjusting s when passing a quantifier.
Disadvantage: Have to reprove many substitution lemmas for subc.

We prove the new rule admissible by induction over the rules:
lemma $O K$-subc: $O K p z \Longrightarrow O K$ (subc csp) (subcs c s z)
Trivial for everything except cases with quantifiers, newness, e.g. witness in Exi-E rule (no assumptions on c or s).
Requires renaming:
lemma OK-psubst: OK pz OK (psubst f p) (map (psubst f) z)

Telescoping closure elimination

Composing closure elimination with constant substitution yields telescoping sequence:

```
subc co(m-1) (subc c c (m-2) (\ldots. (subc com-1 O (sub 0 c cm-1 \ldots..))))
```

Each introduced constant is immediately substituted with correct variable. Subsequent substitutions do not adjust previous variables.
lemma vars-for-consts-for-unis:
closed (length cs) $p \Longrightarrow$ list-all (λc. new $c p$) cs \Longrightarrow distinct $c s \Longrightarrow$ vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) $c s=p$

Telescoping closure elimination

Composing closure elimination with constant substitution yields telescoping sequence:

```
subc co(m-1) (subc c c (m-2) (\ldots. (subc cm-1 0 (sub 0 c cm-1 \ldots..))))
```

Each introduced constant is immediately substituted with correct variable. Subsequent substitutions do not adjust previous variables.
lemma vars-for-consts-for-unis:
closed (length cs) $p \Longrightarrow$ list-all (λc. new $c p$) cs \Longrightarrow distinct cs \Longrightarrow vars-for-consts (consts-for-unis (put-unis (length cs) p) cs) $c s=p$
theorem remove-unis: $O K$ (put-unis $m p$) [] $\Longrightarrow O K p[]$

Implications to premises

For $p \rightarrow q$, weaken assumptions with p, then use modus ponens.

```
lemma shift-imp-assum:
    assumes OK (Imp p q) z
    shows OK q(p#z)
proof -
    have set z\subseteq\operatorname{set}(p#z)
        by auto
    then have OK (Imp p q) (p#z)
        using assms weaken-assumptions by blast
    moreover have OK p(p#z)
        using Assume by simp
    ultimately show OK q (p#z)
        using Imp-E by blast
qed
```


Weaken assumptions

lemma weaken-assumptions: $O K p z \Longrightarrow$ set $z \subseteq$ set $z^{\prime} \Longrightarrow O K p z^{\prime}$
Shown by induction over inference rules.
Trivial, except for Exi-E and Uni-I, where newness is required: The new constant given by the induction hypothesis is not necessarily new under the bigger premises.
Again, renaming is necessary.

Weaken assumptions

lemma weaken-assumptions: $O K p z \Longrightarrow$ set $z \subseteq$ set $z^{\prime} \Longrightarrow O K p z^{\prime}$
Shown by induction over inference rules.
Trivial, except for Exi-E and Uni-I, where newness is required: The new constant given by the induction hypothesis is not necessarily new under the bigger premises.
Again, renaming is necessary.

Remove chain of implications by induction:
lemma remove-imps: OK (put-imps pz) $z^{\prime} \Longrightarrow O K p\left(r e v z @ z^{\prime}\right)$
using shift-imp-assum by (induct z arbitrary: z^{\prime}) simp-all

Completeness

We can now finish the completeness proof:
let $? p=$ put-imps $p(\operatorname{rev} z)$
have $*: \forall(e::$ nat \Rightarrow 'a) $f g$. semantics e $f g$?p using assms semantics-put-imps by fastforce
obtain m where $* *$: sentence (put-unis m ? p) using ex-closure by blast
moreover have $\forall(e::$ nat \Rightarrow 'a) $f g$. semantics ef g (put-unis m ?p) using $*$ valid-put-unis by blast
ultimately have OK (put-unis m ?p) [] using assms sentence-completeness by blast
then have $O K ? p$ []
using ** remove-unis by blast
then show OK pz
using remove-imps by fastforce

Conclusion

- NaDeA is sound and complete.
- Also for open formulas.
- Standard results like renaming, weakening, deduction theorem arise naturally in proof.
- Formalization ensures tricky cases are treated properly.
- Formalization may also introduce complexity, e.g. de Bruijn indices.

References

Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel, Isabelle/HOL - A Proof Assistant for Higher-Order Logic, vol. 2283, Lecture Notes in Computer Science, Springer, 2002.

Stefan Berghofer, First-Order Logic According to Fitting, Archive of Formal Proofs, August 2007. http://isa-afp.org/entries/FOL-Fitting.html

Melvin Fitting, First-Order Logic and Automated Theorem Proving, Second Edition, Graduate Texts in Computer Science, Springer, 1996.

Markus Wenzel, Isar - A Generic Interpretative Approach to Readable Formal Proof Documents, Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs'99, September, Proceedings (Nice, France), (Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring and Laurent Théry, editors), vol. 1690, Lecture Notes in Computer Science, Springer, 1999, pp. 167-184.

Jørgen Villadsen, Andreas Halkjer From and Anders Schlichtirrull, Natural Deduction and the Isabelle Proof Assistant, Proceedings 6th International Workshop on Theorem proving components for Educational software (Gothenburg, Sweden), (Pedro Quaresma and Walther Neuper, editors), vol. 267, Electronic Proceedings in Theoretical Computer Science, Open Publishing Association, 2018, pp. 140-155.
http://eptcs.org/paper.cgi?ThEdu17.9

