Hybrid Logic

Asta Halkjær From, DTU Compute

World Logic Day, 2021-01-14

Modal Logic

Let's talk about relational structures

- People

- ...

- Program states
- Possible worlds

Internal perspective

 $\Diamond,\,\square$ modalities talk about relations

How do we talk about points?

Hybrid Logic

Introduce *nominals*:

- True at one place
- name worlds

Induce satisfaction operator:

- $\bigotimes_k \varphi$ "jumps" to k
- ¬ $@_i$ ¬ φ iff $@_i \varphi$

Added expressivity:

- Irreflexive frame: $i \rightarrow \Box \neg i$
- Asymmetric frame: $i \rightarrow \Box \neg \Diamond i$

Syntax and Semantics

 $\phi, \psi ::= p \mid i \mid \neg \phi \mid \phi \lor \psi \mid \Diamond \phi \mid @_i \phi$

Kripke model ((W, R), V) and assignment g.

W: underlying set, R: binary relation, V: unary relation, g: map from nominals to worlds.

$\mathfrak{M},g,w\models p$	iff	$w \in V(p)$
$\mathfrak{M},g,w\models i$	iff	g(i) = w
$\mathfrak{M},g,w\models\neg\phi$	iff	$\mathfrak{M},g,w\not\models\phi$
$\mathfrak{M},g,w\models\phi\lor\psi$	iff	$\mathfrak{M},g,w\models\phi\text{ or }\mathfrak{M},g,w\models\psi$
$\mathfrak{M},g,w\models\Diamond\phi$	iff	for some w' , wRw' and $\mathfrak{M}, g, w' \models \phi$
$\mathfrak{M}, g, w \models @_i \phi$	iff	$\mathfrak{M},g,g(i)\models\phi$

Seligman-Style Tableau

Truth relative to a world

 $@_i$ -formulas!

Very global

 $@_i\phi_1$ $@_i\phi_2$ $@_j\psi_1$

Named blocks (+ explicit context switch)

Local perspective!

i ϕ_1 ϕ_2 j ψ_1

a	a	a	a	a a
$\phi \lor \psi$	$\neg(\phi \lor \psi)$	$\neg \neg \phi$	$\Diamond \phi$	$\neg \Diamond \phi \Diamond i$
a	a	a	a	a
/ \				
$\phi \psi$	$ eg \phi$	ϕ	$\Diamond i$	$ eg @_i \phi$
	$ eg \psi$		$@_i\phi$	
(\vee)	$(\neg \lor)$	$(\neg \neg)$	$(\diamondsuit)^1$	$(\neg \diamondsuit)$
	b b	b b	b	b
	$a \phi$	$\phi \neg \phi$	$@_a\phi$	$\neg @_a \phi$
	\overline{a}	a	a	a
			1	
\overline{i}	$\dot{\phi}$	×	ϕ	$\neg \phi$
${\sf GoTo}^2$	Nom	Closing	(@)	$(\neg @)$

Aside: Isabelle

Formalize!

| Neg:

 $\langle (\neg \neg p) at a in (ps, a) \# branch \Rightarrow$ new p a ((ps, a) # branch) \Rightarrow A, Suc n \vdash (p # ps, a) # branch \Rightarrow A, n \vdash (ps, a) # branch>

Soundness and completeness is checked mechanically

Verify the definitions, trust the results

Example Tableau

Start from refuted formula (at arbitrary nominal)

Derive conclusions

Search for contradictions

[Potential] restricts GoTo

0.	a		
1.	$ eg(\neg @_i \phi \lor @_i \phi)$		[0]
2.	$ eggin{aligned} egg$	$(\neg \lor)$ 1	[1]
3.	$\neg @_i \phi$	$(\neg \lor)$ 1	[1]
4.	$@_i\phi$	$(\neg \neg) 2$	[2]
5.	i	GoTo	[1]
6.	$ eg \phi$	$(\neg @) 3$	[2]
7.	ϕ	(@) 4	[3]
	X		

Restrictions

Don't apply rules ad infinitum

Simple to formalize

- **S1** The output of a non-GoTo rule must include a formula new to the current block type.
- **S2** The (\Diamond) rule can only be applied to input $\Diamond \phi$ on an *a*-block if $\Diamond \phi$ is not already witnessed at *a* by formulas $\Diamond i$ and $@_i \phi$ for some witnessing nominal *i*.
- **S3** We associate *potential*, a natural number n, with each line in the tableau. GoTo must decrement the number, the other rules increment it and we may start from any amount.
- S4 We parameterize the proof system by a fixed set of nominals A and impose the following:a. The nominal introduced by the (◊) rule is not in A.
 - **b.** For any nominal *i*, Nom only applies to a formula $\phi = i$ or $\phi = \Diamond i$ when $i \in A$.

Completeness Landscape

Analytic completeness for a **restricted** internalized tableau system *Bolander, Blackburn (2007)*

Completeness for a **restricted** Seligman-style tableau system [via translation] *Blackburn, Bolander, Braüner, Jørgensen (2017)*

Synthetic completeness for **unrestricted** Seligman-style tableau systems *Jørgensen, Blackburn, Bolander, Braüner (2016)*

Synthetic completeness for **restricted** Seligman-style tableau systems *F. (under review but formalized)*

Completeness Approach

Start from existing synthetic approach

Tweak Hintikka sets to restrictions

Adapt model from internalized calculus

Isabelle guides the way

Aside: Worlds are sets, no need for Bridge

Status

Tableau system ST^A for basic hybrid logic

Informal termination proof [via translation]

4900+ lines in the Archive of Formal Proofs (and 2000+ WIP)

References

Blackburn, P. (2000). Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL, 8(3), 339-365.

Blackburn, P. R., Bolander, T., Braüner, T., & Jørgensen, K. F. (2017). Completeness and Termination for a Seligman-style Tableau System. Journal of Logic and Computation, 27(1), 81-107.

Jørgensen, K. F., Blackburn, P. R., Bolander, T., & Braüner, T. (2016). Synthetic Completeness Proofs for Seligman-style Tableau Systems. In L. Beklemishev, S. Demri, & A. Máté (Eds.), Proceedings of Advances in Modal Logic 2016 (Vol. 11, pp. 302-321). College Publications.

From, A. H., Blackburn, P. R., & Villadsen, J. (2020). Formalizing a Seligman-Style Tableau System for Hybrid Logic. In International Joint Conference on Automated Reasoning (Vol. 12166, pp. 474-481). Springer LNCS.

From, A. H. (2019). Formalizing a Seligman-Style Tableau System for Hybrid Logic. In Archive of Formal Proofs <u>https://devel.isa-afp.org/entries/Hybrid_Logic.html</u>, Formal Proof Development.